Dealing with intra-individual variability in the analysis of activity patterns from accelerometer data

1University of Sassari, Department of Veterinary Medicine, via Vienna 2, I-07100, Sassari, Italy 2University of Ferrara, Department of Life Sciences and Biotechnology, Via L. Borsari 46, I-44121 Ferrara, Italy 3ISPRA Istituto Superiore per la Protezione e la Ricerca Ambientale, via Ca’ Fornacetta 9, Ozzano E. I-40064 Bologna, Italy 4University of Siena, Department of Life Sciences, via P. A. Mattioli 4, I-53100, Siena, Italy

[1]  A. Brambilla,et al.  Assessing the effects of helicopter disturbance in a mountain ungulate on different time scales , 2018 .

[2]  Tavis D. Forrester,et al.  Effect of activity states on habitat selection by black-tailed deer , 2018, The Journal of Wildlife Management.

[3]  Rory P. Wilson,et al.  Best practice for collar deployment of tri-axial accelerometers on a terrestrial quadruped to provide accurate measurement of body acceleration , 2020, Animal Biotelemetry.

[4]  M. Heurich,et al.  New Possibilities of Observing Animal Behaviour from a Distance Using Activity Sensors in Gps-Collars: An Attempt to Calibrate Remotely Collected Activity Data with Direct Behavioural Observations in Red Deer Cervus elaphus , 2009 .

[5]  The weather dictates the rhythms: Alpine chamois activity is well adapted to ecological conditions , 2016, Behavioral Ecology and Sociobiology.

[6]  Simon N. Wood,et al.  A simple test for random effects in regression models , 2013 .

[7]  C. Willisch,et al.  Feeding or Resting? The Strategy of Rutting Male Alpine Chamois , 2007 .

[8]  P. Ratti,et al.  Die Konstitution des Alpensteinbockes (Capra i. ibex L.) in Abhängigkeit von Geschlecht, Alter, Herkunft und Jahreszeit in Graubünden (Schweiz) und im Parco Nazionale Gran Paradiso (Italien) , 1997, Zeitschrift für Jagdwissenschaft.

[9]  J. von Hardenberg,et al.  Forecasting the response to global warming in a heat-sensitive species , 2019, Scientific Reports.

[10]  P. Stephens,et al.  The behavioral trade-off between thermoregulation and foraging in a heat-sensitive species , 2017 .

[11]  Steven R. Blankenship,et al.  Does Moonlight Increase Predation Risk for Elusive Mammals in Costa Rica? , 2020 .

[12]  Causes and Consequences of Timing Errors Associated With Global Positioning System Collar Accelerometer Activity Monitors , 2014 .

[13]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[14]  B. Mclellan,et al.  Effect of Season and High Ambient Temperature on Activity Levels and Patterns of Grizzly Bears (Ursus arctos) , 2015, PloS one.

[15]  Ran Nathan,et al.  Using tri-axial acceleration data to identify behavioral modes of free-ranging animals: general concepts and tools illustrated for griffon vultures , 2012, Journal of Experimental Biology.

[16]  M. Heurich,et al.  Seasonal and daily activity patterns of free-living Eurasian lynx Lynx lynx in relation to availability of kills , 2013 .

[17]  J. Swenson,et al.  An Individual-Based Method to Measure Animal Activity Levels: A Test on Brown Bears , 2006 .

[18]  G. Lincoln The seasonal reproductive changes in the Red deer stag (Cervus elaphus) , 2010 .

[19]  B. Bassano,et al.  Accuracy of body weight prediction in Alpine ibex (Capra ibex, L. 1758) using morphometry. , 2003, Journal of animal physiology and animal nutrition.

[20]  G. Bloch,et al.  Animal activity around the clock with no overt circadian rhythms: patterns, mechanisms and adaptive value , 2013, Proceedings of the Royal Society B: Biological Sciences.

[21]  Roland Kays,et al.  Observing the unwatchable through acceleration logging of animal behavior , 2013, Animal Biotelemetry.

[22]  Bruno Bassano,et al.  Assessing the Impact of Capture on Wild Animals: The Case Study of Chemical Immobilisation on Alpine Ibex , 2015, PloS one.

[23]  T. Abáigar,et al.  Time allocation and patterns of activity of the dorcas gazelle (Gazella dorcas) in a sahelian habitat , 2017, Mammal Research.

[24]  John Shawe-Taylor,et al.  Movement Activity Based Classification of Animal Behaviour with an Application to Data from Cheetah (Acinonyx jubatus) , 2012, PloS one.

[25]  Rory P. Wilson,et al.  Making overall dynamic body acceleration work: on the theory of acceleration as a proxy for energy expenditure , 2011 .

[26]  J. Gaillard,et al.  Determinants of seasonal variation in activity patterns of mouflon , 2008 .

[27]  M. P. Ponzetta,et al.  Inferring behaviour of grazing livestock: opportunities from GPS telemetry and activity sensors applied to animal husbandry , 2018 .

[28]  Georges Janeau,et al.  GPS approach to study fine-scale site use by wild red deer during active and inactive behaviors , 2003 .

[29]  E. Shepard Identification of animal movement patterns using tri-axial accelerometry , 2008 .

[30]  D. Deyoung,et al.  Neck lesions in ungulates from collars incorporating satellite technology , 2004 .

[31]  Marco Apollonio,et al.  Seasonal variations of spatial behaviour in female Alpine ibex (Capra ibex ibex) in relation to climatic conditions and age , 2004 .

[32]  S. C. Weeker HABITAT SELECTION. , 1964, Scientific American.

[33]  S. Daan,et al.  Latitudinal clines: an evolutionary view on biological rhythms†,‡ , 2013, Proceedings of the Royal Society B: Biological Sciences.

[34]  M. Festa‐Bianchet,et al.  Seasonal changes in sexual size dimorphism in northern chamois , 2011 .

[35]  A. Matsumoto-Oda,et al.  GPS-identified, low-level nocturnal activity of vervets (Chlorocebus pygerythrus) and olive baboons (Papio anubis) in Laikipia, Kenya. , 2017, American journal of physical anthropology.

[36]  Thomas Ruf,et al.  A versatile telemetry system for continuous measurement of heart rate, body temperature and locomotor activity in free‐ranging ruminants , 2010, Methods in ecology and evolution.

[37]  A. Karamanlidis,et al.  Reduced movement of wildlife in Mediterranean landscapes: a case study of brown bears in Greece , 2020 .

[38]  B. Bassano,et al.  Horn growth but not asymmetry heralds the onset of senescence in male Alpine ibex (Capra ibex) , 2004 .

[39]  S. Côté,et al.  Quantification and Accuracy of Activity Data Measured with VHF and GPS Telemetry , 2006 .

[40]  J. Belant,et al.  Identification of carnivore kill sites is improved by verified accelerometer data , 2020, Animal Biotelemetry.

[41]  Yan Huang,et al.  Activity Patterns of the Giant Panda (Ailuropoda melanoleuca) , 2015 .

[42]  J. Gaillard,et al.  What factors shape sexual size dimorphism in ungulates , 1999 .

[43]  R. Woodroffe,et al.  Coping with climate change: limited behavioral responses to hot weather in a tropical carnivore , 2019, Oecologia.

[44]  Ian Findley,et al.  Assessing Impact, Handbook of EIA and SEA Follow-up , 2004 .

[45]  C. Bertolucci,et al.  An analysis of intrinsic and extrinsic factors affecting the activity of a nocturnal species: The wild boar , 2017 .

[46]  B. Bassano,et al.  Consequences of snowy winters on male mating strategies and reproduction in a mountain ungulate , 2013, Behavioural Processes.

[47]  A. Gaylord,et al.  Choosing Sampling Interval Durations for Remotely Classifying Rocky Mountain Elk Behavior , 2016 .

[48]  Maureen H. Murray,et al.  Individual flexibility in nocturnal activity reduces risk of road mortality for an urban carnivore , 2015 .

[49]  E. Frigato,et al.  Is nocturnal activity compensatory in chamois? A study of activity in a cathemeral ungulate , 2018, Mammalian Biology.

[50]  F. Parrini,et al.  Habitat selection in adult males of Alpine ibex, Capra ibex ibex , 2003 .

[51]  Rory P. Wilson,et al.  Moving towards acceleration for estimates of activity-specific metabolic rate in free-living animals: the case of the cormorant. , 2006, The Journal of animal ecology.

[52]  D. Chapman,et al.  Fallow deer: Their history, distribution, and biology , 1975 .

[53]  Predation Risk as a Factor Affecting Sexual Segregation in Alpine Ibex , 2007 .

[54]  M. Heurich,et al.  Fear of the dark? Contrasting impacts of humans vs lynx on diel activity of roe deer across Europe. , 2019, Journal of Animal Ecology.