Improved event‐triggered adaptive control of non‐linear uncertain networked systems

Over the past few years, networked control systems (NCSs) have shown rapid progress and have indeed been very popular in terms of research as well as industrial applications. The issue of limited resources has been a fundamental problem in the translation of modern control techniques to NCS design. In order to address the aforesaid design challenge, an improved event-triggered adaptive backstepping control scheme is presented in this study for a class of uncertain NCSs with non-Lipschitz non-linearities under limited resources. Rather than a preselected constant threshold assumption, a well-designed and systematic triggering rule is derived based on the Lyapunov approach in order to satisfy bandwidth limitation and ensure system stability with acceptable transient performance. Relative to existing strategies in the literature, the proposed method leads to a substantially reduced number of transmissions with longer inter-event time. Thereby, the proposed algorithm exhibits more efficiency in resource utilisation. Simulation results on a networked control based robotic manipulator system illustrate the efficacy of the proposed adaptive scheme compared to benchmark control algorithms intended for a similar application.