Design and CFD Analysis of the Fluid Dynamic Sampling System of the “MicroMED” Optical Particle Counter †
暂无分享,去创建一个
Fabio Cozzolino | Diego Scaccabarozzi | Cesare Molfese | Bortolino Saggin | Giuseppe Mongelluzzo | Alan Cosimo Ruggeri | Francesca Esposito | Gabriele Franzese | Carmen Porto | D. Scaccabarozzi | B. Saggin | F. Esposito | A. Ruggeri | G. Mongelluzzo | C. Molfese | G. Franzese | F. Cozzolino | C. Porto
[1] Giuseppe Pascazio,et al. Local impact of dust storms around a suburban building in arid and semi-arid regions: numerical simulation examples from Dubai and Riyadh, Arabian Peninsula , 2015, Arabian Journal of Geosciences.
[2] P. Schipani,et al. The DREAMS experiment flown on the ExoMars 2016 mission for the study of Martian environment during the dust storm season , 2014, 2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace).
[3] Mark T. Lemmon,et al. Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini‐TES , 2006 .
[4] Floriana Esposito,et al. MEDUSA: Observation of atmospheric dust and water vapor close to the surface of Mars , 2011 .
[5] C. Holstein-Rathlou,et al. An Environmental Wind Tunnel Facility for Testing Meteorological Sensor Systems , 2014 .
[6] Ronald Greeley,et al. Windblown Dust on Earth, Mars and Venus , 1976 .
[7] Fausto Cortecchia,et al. Optimization of the Fluid Dynamic Design of the Dust Suite-MicroMED Sensor for the ExoMars 2020 Mission , 2018, 2018 5th IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace).
[8] Fabio Cozzolino,et al. Optimization of the sensor "MicroMED" for the ExoMars 2020 mission: the Flight Model design , 2019, 2019 IEEE 5th International Workshop on Metrology for AeroSpace (MetroAeroSpace).
[9] Giuseppe Pascazio,et al. Numerical simulation of pyroclastic density currents using locally refined Cartesian grids , 2011 .
[10] E. Cunningham. On the Velocity of Steady Fall of Spherical Particles through Fluid Medium , 1910 .
[11] Floriana Esposito,et al. MEDUSA: The ExoMars experiment for in-situ monitoring of dust and water vapour , 2009 .
[12] J. Kok,et al. The physics of wind-blown sand and dust , 2012, Reports on progress in physics. Physical Society.
[13] Fausto Cortecchia,et al. MicroMED, design of a particle analyzer for Mars , 2017, Measurement.
[14] A. Aboudan,et al. The DREAMS Experiment Onboard the Schiaparelli Module of the ExoMars 2016 Mission: Design, Performances and Expected Results , 2018, Space Science Reviews.
[15] Fausto Cortecchia,et al. CFD analysis and optimization of the sensor “MicroMED” for the ExoMars 2020 mission , 2019 .
[16] Floriana Esposito,et al. Physical aspect of an “impact sensor” for the detection of cometary dust momentum onboard the “Rosetta” space mission , 2002 .
[17] Simon F. Green,et al. 67P/C-G inner coma dust properties from 2.2 au inbound to 2.0 au outbound to the Sun , 2016 .
[18] P. Schipani,et al. The DREAMS experiment on the ExoMars 2016 mission for the study of Martian environment during the dust storm season , 2014, 2014 IEEE Metrology for Aerospace (MetroAeroSpace).
[19] Fausto Cortecchia,et al. Design validation of MicroMED, a particle analyzer for ExoMars 2020 , 2019, 2019 IEEE 5th International Workshop on Metrology for AeroSpace (MetroAeroSpace).
[20] Floriana Esposito,et al. GIADA: The Grain Impact Analyser and Dust Accumulator for the Rosetta space mission , 2002 .
[21] S. Debei,et al. Dust measurements in the coma of comet 67P/Churyumov-Gerasimenko inbound to the Sun , 2015, Science.
[22] José S Andrade,et al. Aeolian transport layer. , 2006, Physical review letters.