Challenging the generalization capabilities of Graph Neural Networks for network modeling
暂无分享,去创建一个
Albert Cabellos-Aparicio | Pere Barlet-Ros | Paul Almasan | Krzysztof Rusek | José Suárez-Varela | Marta Arias | Sergi Carol-Bosch | A. Cabellos-Aparicio | J. Suárez-Varela | P. Barlet-Ros | Krzysztof Rusek | Paul Almasan | M. Arias | Sergi Carol-Bosch
[1] Zhibo Gong,et al. Deep-Q: Traffic-driven QoS Inference using Deep Generative Network , 2018, NetAI@SIGCOMM.
[2] Chi Harold Liu,et al. Experience-driven Networking: A Deep Reinforcement Learning based Approach , 2018, IEEE INFOCOM 2018 - IEEE Conference on Computer Communications.
[3] Roberto Proietti,et al. Deep-RMSA: A Deep-Reinforcement-Learning Routing, Modulation and Spectrum Assignment Agent for Elastic Optical Networks , 2018, 2018 Optical Fiber Communications Conference and Exposition (OFC).
[4] Jean C. Walrand,et al. Knowledge-Defined Networking: Modelització de la xarxa a través de l’aprenentatge automàtic i la inferència , 2016 .
[5] Dafna Shahaf,et al. Learning to Route , 2017, HotNets.
[6] Yusheng Ji,et al. Understanding the Modeling of Computer Network Delays using Neural Networks , 2018, Big-DAMA@SIGCOMM.