Superconducting properties of a parallelepiped mesoscopic superconductor: A comparative study between the 2D and 3D Ginzburg–Landau models

[1]  J. Pearl,et al.  CURRENT DISTRIBUTION IN SUPERCONDUCTING FILMS CARRYING QUANTIZED FLUXOIDS , 1964 .

[2]  Qiang Du,et al.  A model for superconducting thin films having variable thickness , 1993 .

[3]  Larkin,et al.  Geometrical barriers in high-temperature superconductors. , 1994, Physical review letters.

[4]  William Gropp,et al.  Numerical Simulation of Vortex Dynamics in Type-II Superconductors , 1996 .

[5]  Qiang Du,et al.  A model for variable thickness superconducting thin films , 1996 .

[6]  F. M. Peeters,et al.  Dependence of the vortex configuration on the geometry of mesoscopic flat samples , 2002 .

[7]  A. Zhukov,et al.  Correlation of the vortex order-disorder transition with the symmetry of the crystal lattice in V 3 Si , 2003 .

[8]  W. Kwok,et al.  Tuning the architecture of mesostructures by electrodeposition. , 2004, Journal of the American Chemical Society.

[9]  D. Glotov Vortices in the three-dimensional thin-film Ginzburg–Landau model of superconductivity , 2011 .

[10]  Qiang Du,et al.  Numerical approximations of the Ginzburg–Landau models for superconductivity , 2005 .

[11]  P. N. Lisboa-Filho,et al.  Temperature-dependent vortex motion in a square mesoscopic superconducting cylinder: Ginzburg-Landau calculations , 2006 .

[12]  The break-up of the vortex structure in a mesoscopic wire containing a constriction , 2006 .

[13]  P. Bartlett,et al.  Shape induced anomalies in vortex pinning and dynamics of superconducting antidot arrays with spherical cavities , 2006 .

[14]  Gavin Burnell,et al.  SCENET roadmap for superconductor digital electronics , 2006 .

[15]  F. Peeters,et al.  Effect of the boundary condition on the vortex patterns in mesoscopic three-dimensional superconductors: disk and sphere , 2007, 0712.4079.

[16]  F. Peeters,et al.  Vortices in a mesoscopic cone: A superconducting tip in the presence of an applied field , 2008 .

[17]  I. Grigorieva,et al.  Pillars as antipinning centers in superconducting films , 2008 .

[18]  F. Peeters,et al.  Magnetic properties of vortex states in spherical superconductors , 2008 .

[19]  V. Sokolovsky,et al.  Meissner transport current in flat films of arbitrary shape and a magnetic trap for cold atoms , 2010 .

[20]  E. Sardella,et al.  Superconducting boundary conditions for mesoscopic circular samples , 2010 .

[21]  L. Covaci,et al.  Unconventional vortex states in nanoscale superconductors due to shape-induced resonances in the inhomogeneous cooper-pair condensate. , 2012, Physical review letters.

[22]  L. Covaci,et al.  Vortex states in nanoscale superconducting squares : the influence of quantum confinement , 2013, 1303.7153.

[23]  F. Peeters,et al.  Current-induced cutting and recombination of magnetic superconducting vortex loops in mesoscopic superconductor-ferromagnet heterostructures , 2013 .

[24]  P. N. Lisboa-Filho,et al.  Magnetic field profile of a mesoscopic SQUID-shaped superconducting film , 2013 .

[25]  E. Sardella,et al.  Superconducting State of a Disk with a Pentagonal/Hexagonal Trench/Barrier , 2014 .

[26]  V. Moshchalkov,et al.  Efficient solution of 3D Ginzburg-Landau problem for mesoscopic superconductors , 2014 .

[27]  Huiqian Luo,et al.  Measurements of the superconducting fluctuations in optimally doped BaFe2−xNixAs2 under high magnetic fields: probing the 3D-anisotropic Ginzburg–Landau approach , 2014, 1406.5829.

[28]  S. Vieira,et al.  Imaging superconducting vortex cores and lattices with a scanning tunneling microscope , 2014, 1403.5514.

[29]  Multi-vortex State Induced by Proximity Effects in a Small Superconducting Square , 2014 .