Optimization of Mueller matrix polarimeters in the presence of error sources.

Methods are presented for optimizing the design of Mueller matrix polarimeters and and in particular selecting the retardances and orientation angles of polarization components to ensure accurate reconstruction of a sample's Mueller matrix in the presence of error sources. Metrics related to the condition number and to the singular value decomposition are used to guide the design process for Mueller matrix polarimeters with the goal of specifying polarization elements, comparing polarimeter configurations, estimating polarimeter errors, and compensating for known error sources. The use of these metrics is illustrated with analyses of two example polarimeters: a dual rotating retarder polarimeter, and a dual variable retarder polarimeter.

[1]  L. Johann,et al.  Optimizing precision of rotating compensator ellipsometry , 2007 .

[2]  Rasheed M. A. Azzam,et al.  General analysis and optimization of the four- detector photopolarimeter , 1988 .

[3]  J. L. Gasent,et al.  IMaX : a polarimeter based on Liquid Crystal Variable Retarders for an aerospace mission , 2008 .

[4]  A. Ambirajan,et al.  Optimum Angles for a Polarimeter: Part II , 1995 .

[5]  Eustace L. Dereniak,et al.  Figures of merit for complete Stokes polarimeter optimization , 2000, SPIE Optics + Photonics.

[6]  Antonello De Martino,et al.  Optimized Mueller polarimeter with liquid crystals. , 2003, Optics letters.

[7]  G. S. Phipps,et al.  Optimization of retardance for a complete Stokes polarimeter. , 2000, Optics letters.

[8]  J. Tyo Design of optimal polarimeters: maximization of signal-to-noise ratio and minimization of systematic error. , 2002, Applied optics.

[9]  J S Tyo,et al.  Noise equalization in Stokes parameter images obtained by use of variable-retardance polarimeters. , 2000, Optics letters.

[10]  Matthew H. Smith,et al.  Optimization of a dual-rotating-retarder Mueller matrix polarimeter. , 2002, Applied optics.

[11]  Sergey N. Savenkov,et al.  Optimization and structuring of the instrument matrix for polarimetric measurements , 2002 .

[12]  J. S. Tyo,et al.  Optimum linear combination strategy for an N-channel polarization-sensitive imaging or vision system , 1998 .

[13]  E. García-Caurel,et al.  General methods for optimized design and calibration of Mueller polarimeters , 2004 .

[14]  Enric Garcia-Caurel,et al.  Spectroscopic Mueller polarimeter based on liquid crystal devices , 2004 .

[15]  J. Scott Tyo Considerations in polarimeter design , 2000, SPIE Optics + Photonics.

[16]  J. Zallat,et al.  Optimal configurations for imaging polarimeters: impact of image noise and systematic errors , 2006 .