Exploratory study of three-point Green's functions in Landau-gauge Yang-Mills theory

Green’s functions are a central element in the attempt to understand non-perturbative phenomena in Yang-Mills theory. Besides the propagators, 3-point Green’s functions play a significant role, since they permit access to the running coupling constant and are an important input in functional methods. Here we present numerical results for the two non-vanishing 3-point Green’s functions in 3d pure SU(2) Yang-Mills theory in (minimal) Landau gauge, i.e. the three-gluon vertex and the ghost-gluon vertex, considering various kinematical regimes. In this exploratory investigation the lattice volumes are limited to 20 3 and 30 3 at � = 4.2 and � = 6.0. We also present results for the gluon and the ghost propagators, as well as for the eigenvalue spectrum of the Faddeev-Popov operator. Finally, we compare two different numerical methods for the evaluation of the inverse of the Faddeev-Popov matrix, the point-source and the plane-wave-source methods.

[1]  H. Reinhardt,et al.  Infrared analysis of propagators and vertices of Yang-Mills theory in Landau and Coulomb gauge , 2006, hep-th/0605115.

[2]  G. Meurant,et al.  The Lanczos and conjugate gradient algorithms in finite precision arithmetic , 2006, Acta Numerica.

[3]  S. Furui,et al.  Effects of the quark field on the ghost propagator of lattice Landau gauge QCD , 2006, hep-lat/0602027.

[4]  A. Cucchieri,et al.  Infrared behavior of gluon and ghost propagators from asymmetric lattices , 2006, hep-lat/0602012.

[5]  A. Sternbeck,et al.  Spectral properties of the Landau gauge Faddeev-Popov operator in lattice gluodynamics , 2005, hep-lat/0510109.

[6]  A. Cucchieri,et al.  Ghost condensation on the lattice , 2005, hep-lat/0508028.

[7]  A. Maas Gluons at finite temperature in Landau gauge Yang-Mills theory , 2005, hep-ph/0506066.

[8]  A. Schiller,et al.  Towards the infrared limit in SU(3) Landau gauge lattice gluodynamics , 2005, hep-lat/0506007.

[9]  F. Llanes-Estrada,et al.  Vertex functions and infrared fixed point in Landau gauge SU(N) Yang-Mills theory [rapid communication] , 2004, hep-th/0412330.

[10]  A. Maas,et al.  Infrared behavior of the ghost-gluon vertex in Landau gauge Yang-Mills theory , 2004, hep-ph/0411052.

[11]  A. Cucchieri,et al.  Numerical study of the ghost-gluon vertex in Landau gauge , 2004 .

[12]  H. Gies,et al.  Renormalization flow of Yang-Mills propagators , 2004, hep-ph/0408089.

[13]  A. Maas,et al.  High-temperature limit of Landau-gauge Yang-Mills theory , 2004, hep-ph/0408074.

[14]  D. Zwanziger,et al.  Center Vortices and the Gribov Horizon , 2004, hep-lat/0407032.

[15]  D. Litim,et al.  Infrared behavior and fixed points in Landau-gauge QCD. , 2003, Physical review letters.

[16]  A. Cucchieri,et al.  Propagators and running coupling from SU(2) lattice gauge theory , 2003, hep-lat/0312036.

[17]  D. Zwanziger Analytic calculation of color-Coulomb potential , 2003, hep-ph/0312254.

[18]  S. Furui,et al.  Infrared Features of the Landau Gauge QCD , 2003, hep-lat/0305010.

[19]  D. Zwanziger Nonperturbative Faddeev-Popov formula and the infrared limit of QCD , 2003, hep-ph/0303028.

[20]  A. Cucchieri,et al.  SU (2) Landau gluon propagator on a 140^{3} lattice , 2003, hep-lat/0302022.

[21]  D. Zwanziger Time-independent stochastic quantization, Dyson-Schwinger equations, and infrared critical exponents in QCD , 2002, hep-th/0206053.

[22]  A. Cucchieri,et al.  Running coupling constant and propagators inSU(2) Landau gauge , 2002, hep-lat/0209040.

[23]  B. Lucini,et al.  SU(N)gauge theories in2+1dimensions: Further results , 2002, hep-lat/0206027.

[24]  H. Gies Running coupling in Yang-Mills theory: A flow equation study , 2002, hep-th/0202207.

[25]  C. Fischer,et al.  Infrared exponents and running coupling of SU(N) Yang–Mills theories , 2002, hep-ph/0202202.

[26]  C. Fischer,et al.  The Elusiveness of infrared critical exponents in Landau gauge Yang-Mills theories , 2002, hep-ph/0202195.

[27]  C. Lerche,et al.  Infrared exponent for gluon and ghost propagation in Landau gauge QCD , 2002, hep-ph/0202194.

[28]  D. Zwanziger Nonperturbative Landau gauge and infrared critical exponents in QCD , 2001, hep-th/0109224.

[29]  A. Cucchieri,et al.  Propagators and dimensional reduction of hot SU(2) gauge theory , 2001, hep-lat/0103009.

[30]  R. Alkofer,et al.  The infrared behaviour of QCD Green's functions ☆: Confinement, dynamical symmetry breaking, and hadrons as relativistic bound states , 2000, hep-ph/0007355.

[31]  A. Cucchieri Infrared behavior of the gluon propagator in the lattice Landau gauge: The three-dimensional case , 1999, hep-lat/9902023.

[32]  Anthony G Williams,et al.  The structure of the gluon propagator , 1998 .

[33]  M. Teper,et al.  SU(N ) gauge theories in 2+1 dimensions: glueball spectra and k-string tensions , 1998, 1609.03873.

[34]  Lorenz von Smekal,et al.  A Solution to Coupled Dyson-Schwinger Equations for Gluons and Ghosts in Landau Gauge , 1997, hep-ph/9707327.

[35]  R. Alkofer,et al.  INFRARED BEHAVIOR OF GLUON AND GHOST PROPAGATORS IN LANDAU GAUGE QCD , 1997, hep-ph/9705242.

[36]  A. Cucchieri Gribov copies in the minimal Landau gauge: The influence on gluon and ghost propagators , 1997, hep-lat/9705005.

[37]  Fons Rademakers,et al.  ROOT — An object oriented data analysis framework , 1997 .

[38]  A. Cucchieri,et al.  Study of critical slowing-down in SU(2) Landau gauge fixing , 1996, hep-lat/9608051.

[39]  C. Pittori,et al.  αs from the non-perturbatively renormalised lattice three-gluon vertex , 1996, hep-lat/9605033.

[40]  A. Sokal Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms , 1997 .

[41]  A. Cucchieri,et al.  Critical slowing-down in SU(2) Landau gauge-fixing algorithms , 1995, hep-lat/0301019.

[42]  Parrinello Exploratory study of the three-gluon vertex on the lattice. , 1994, Physical review. D, Particles and fields.

[43]  D. Zwanziger Fundamental modular region, Boltzmann factor and area law in lattice theory , 1994 .

[44]  P. Mackenzie,et al.  Viability of lattice perturbation theory. , 1993, Physical review. D, Particles and fields.

[45]  Adler Overrelaxation algorithms for lattice field theories. , 1988, Physical review. D, Particles and fields.

[46]  A. D. Kennedy,et al.  Improved heatbath method for Monte Carlo calculations in lattice gauge theories , 1985 .

[47]  S. Adler Over-relaxation method for the Monte Carlo evaluation of the partition function for multiquadratic actions , 1981 .

[48]  T. Chiu,et al.  Erratum: Analytic properties of the vertex functions in gauge theories. II , 1981 .

[49]  T. Appelquist,et al.  High-temperature Yang-Mills theories and three-dimensional quantum chromodynamics , 1981 .

[50]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[51]  Michael Creutz,et al.  Monte Carlo Study of Quantized SU(2) Gauge Theory , 1980 .

[52]  T. Chiu,et al.  Analytic Properties of the Vertex Function in Gauge Theories. 2. , 1980 .

[53]  Izumi Ojima,et al.  Local Covariant Operator Formalism of Non-Abelian Gauge Theories and Quark Confinement Problem , 1979 .

[54]  V. N. Gribov,et al.  Quantization of non-Abelian gauge theories , 1978 .

[55]  John Taylor,et al.  Ward identities and charge renormalization of the Yang-Mills field , 1971 .