A Numerical Methodology for Efficient Evaluation of 2D Sommerfeld Integrals in the Dielectric Half-Space Problem

The analysis of 2D scattering in the presence of a dielectric half-space by integral-equation formulations involves repeated evaluation of Sommerfeld integrals. Deformation of the contour to the steepest-descent path results in a well-behaved integrand, that can be readily integrated. A well-known drawback of this method is that an analytical expression for the path is available only for evaluation of the reflected fields, but not for the evaluation of the transmitted fields. A simple scheme for numerical determination of the steepest-descent path, valid for both cases, is presented. The computational cost of the numerical determination is comparable to that of evaluating the analytical expression for the steepest-descent path for reflected fields. When necessary, contributions from branch-cut integrals and a second saddle point are taken into account. Certain ranges of the input parameters, which result in integrands that vary rapidly in the neighborhood of the saddle point, require special treatment. Alternative paths and specialized Gaussian quadrature rules for these cases are also proposed. An implementation of the proposed numerically determined steepest-descent path (ND-SDP) method is freely available for download.

[1]  Y. Leviatan,et al.  Analysis of TE scattering from dielectric cylinders using a multifilament magnetic current model , 1988 .

[2]  Leung Tsang,et al.  Fast Computation of Layered Medium Green's Functions of Multilayers and Lossy Media Using Fast All-Modes Method and Numerical Modified Steepest Descent Path Method , 2008, IEEE Transactions on Microwave Theory and Techniques.

[3]  Yehuda Leviatan,et al.  Analysis of strictly bound modes in photonic crystal fibers by use of a source-model technique. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[4]  L. Felsen,et al.  Radiation and scattering of waves , 1972 .

[5]  Y. Leviatan,et al.  Analysis of bandgap characteristics of two-dimensional periodic structures by using the source-model technique , 2003 .

[6]  Krzysztof A. Michalski On the efficient evaluation of integral arising in the sommerfeld halfspace problem , 1985 .

[7]  Guy A. E. Vandenbosch,et al.  The expansion wave concept. I. Efficient calculation of spatial Green's functions in a stratified dielectric medium , 1998 .

[8]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[9]  G. E. Howard,et al.  A closed-form spatial Green's function for the thick microstrip substrate , 1991 .

[10]  A. Ishimaru Electromagnetic Wave Propagation, Radiation, and Scattering , 1990 .

[11]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[12]  Weng Cho Chew,et al.  Fast-forward solvers for the low-frequency detection of buried dielectric objects , 2003, IEEE Trans. Geosci. Remote. Sens..

[13]  K. Michalski,et al.  Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media. I. Theory , 1990 .

[14]  F. N. Frenkiel,et al.  Waves In Layered Media , 1960 .

[15]  Mengtao Yuan,et al.  Computation of the Sommerfeld Integral tails using the matrix pencil method , 2006, IEEE Transactions on Antennas and Propagation.

[16]  Weng Cho Chew,et al.  Fast evaluation of Sommerfeld integrals for EM scattering and radiation by three-dimensional buried objects , 1999, IEEE Trans. Geosci. Remote. Sens..

[17]  A. Sommerfeld Über die Ausbreitung der Wellen in der drahtlosen Telegraphie , 1909 .

[18]  R. Mittra,et al.  EVALUATION OF SOMMERFELD INTEGRALS FOR LOSSY HALF-SPACE PROBLEMS , 1981 .

[19]  W. Chew Waves and Fields in Inhomogeneous Media , 1990 .

[20]  Evaluation of Sommerfeld integrals arising in the ground stake antenna problem , 1987 .

[21]  A. Cangellaris,et al.  Evaluation of layered media Green's functions via rational function fitting , 2004, IEEE Microwave and Wireless Components Letters.

[22]  Krzysztof A. Michalski,et al.  Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media. II. Implementation and results for contiguous half-spaces , 1990 .

[23]  Weng Cho Chew,et al.  Fast inhomogeneous plane wave algorithm for scattering from objects above the multilayered medium , 2001, IEEE Trans. Geosci. Remote. Sens..

[24]  Giovanni Monegato,et al.  Nonexistence of extended Gauss-Laguerre and Gauss-Hermite quadrature rules with positive weights , 1978 .

[25]  K. Michalski,et al.  Multilayered media Green's functions in integral equation formulations , 1997 .

[26]  Y. Leviatan,et al.  Analysis Of Electromagnetic Scattering From Buried Cylinders Using A Multifilament Current Model , 1990, 10th Annual International Symposium on Geoscience and Remote Sensing.

[27]  H. Bertoni,et al.  Reflection and Transmission of Beams at a Dielectric Interface , 1973 .

[28]  G. Y. Delisle,et al.  Discrete image theory for horizontal electric dipoles in a multilayered medium , 1988 .

[29]  Ismo V. Lindell,et al.  Exact image theory for the Sommerfeld half-space problem, part I: Vertical magnetic dipole , 1984 .

[30]  E. Marx,et al.  Scattering by an arbitrary cylinder at a plane interface: broadside incidence , 1989 .

[31]  R. Harrington Time-Harmonic Electromagnetic Fields , 1961 .

[32]  Yehuda Leviatan,et al.  Efficient and spurious-free integral-equation-based optical waveguide mode solver. , 2007, Optics express.

[33]  Amir Boag,et al.  Generalized formulations for electromagnetic scattering from perfectly conducting and homogeneous material bodies-theory and numerical solution , 1988 .

[34]  Weng Cho Chew,et al.  Efficient Evaluation of Sommerfeld Integrals for Tm Wave Scattering By Buried Objects , 1998 .

[35]  J. Bernal,et al.  2-D analysis of leakage in printed-circuit lines using discrete complex-images technique , 2002 .

[36]  O. Martin,et al.  Accurate and efficient computation of the Green's tensor for stratified media , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[37]  GREEN'S FUNCTIONS OF FILAMENT SOURCES EMBEDDED IN STRATIFIED DIELECTRIC MEDIA , 2006 .

[38]  W. Gautschi Orthogonal Polynomials: Computation and Approximation , 2004 .

[39]  J. Zenneck Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie , 1907 .

[40]  Amir Boag,et al.  Analysis of electromagnetic scattering from dielectric cylinders using a multifilament current model , 1987 .

[41]  Andreas C. Cangellaris,et al.  A new technique for the derivation of closed-form electromagnetic Green's functions for unbounded planar layered media , 2002 .

[42]  Yehuda Leviatan,et al.  Analysis of electromagnetic scattering from buried cylinders using a multifilament current model , 1990 .

[43]  D. Kaklamani,et al.  Aspects of the Method of Auxiliary Sources (MAS) in computational electromagnetics , 2002 .