Approximation of the Hilbert Transform on the real line using Hermite zeros

The authors study the Hilbert Transform on the real line. They introduce some polynomial approximations and some algorithms for its numerical evaluation. Error estimates in uniform norm are given.

[1]  Ian H. Sloan,et al.  Properties of Interpolatory Product Integration Rules , 1982 .

[2]  Giovanni Monegato,et al.  Nyström interpolants based on zeros of Laguerre polynomials for some Weiner-Hopf equations , 1997 .

[3]  Eileen L. Poiani Mean Cesaro summability of Laguerre and Hermite series and asymptotic estimates of Laguerre and Hermite polynomials , 1972 .

[4]  R. Kress,et al.  Anwendung der Rechteckregel auf die reelle Hilberttransformation mit unendlichem Intervall , 1970 .

[5]  Paul Nevai,et al.  Mean convergence of Lagrange interpolation. III , 1984 .

[6]  В. П. Скляров О сходимости интерпо ляционного процесса Лагранжа-Эрмита для н еограниченных функц ии , 1994 .

[7]  Bernard Bialecki,et al.  Sinc Quadratures for Cauchy Principal Value Integrals , 1992 .

[8]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[9]  Giuseppe Mastroianni,et al.  Functions of the Second Kind for Freud Weights and Series Expansions of Hilbert Transforms , 1995 .

[10]  N. Bary,et al.  Treatise of Trigonometric Series , 1966 .

[11]  Sheo Kumar A Note on Quadrature Formulae for Cauchy Principal Value Integrals , 1980 .

[12]  Giuseppe Mastroianni On the convergence of product formulas for the evaluation of certain two-dimensional Cauchy principal value integrals , 1989 .

[13]  G. P. Névai,et al.  Mean convergence of Lagrange interpolation, II☆ , 1976 .

[14]  Nicola Mastronardi,et al.  Some numerical algorithms to evaluate Hadamard finite-part integrals , 1996 .

[15]  Giovanni Monegato,et al.  Convergence of product integration rules over (0, ∞ ) for functions with weak singularities at the origin , 1995 .

[16]  F. Stenger Numerical Methods Based on Whittaker Cardinal, or Sinc Functions , 1981 .

[17]  Avram Sidi,et al.  Convergence of product integration rules for functions with interior and end point singularities over bounded and unbounded intervals , 1986 .

[18]  F. Stenger Numerical Methods Based on Sinc and Analytic Functions , 1993 .

[19]  David Colella Commutative Harmonic Analysis , 1989 .

[20]  Giovanni Monegato,et al.  Convergence of product formulas for the numerical evaluation of certain two-dimensional Cauchy principal value integrals , 1984 .

[21]  W. Gautschi A Survey of Gauss-Christoffel Quadrature Formulae , 1981 .

[22]  Giuliana Criscuolo,et al.  On the convergence of product formulas for the numerical evaluation of derivatives of Cauchy principal value integrals , 1988 .

[23]  Jean-François Richard,et al.  Methods of Numerical Integration , 2000 .

[24]  N. Akhiezer,et al.  Lectures on integral transforms , 1988 .

[25]  A. L. Levin,et al.  Christoffel functions, orthogonal polynomials, and Nevai's conjecture for Freud weights , 1992 .

[26]  K. K. Boimatov,et al.  On a singular integral operator , 1988 .

[27]  Frank Stenger,et al.  Approximations via Whittaker's cardinal function , 1976 .

[28]  J. Szabados,et al.  Weighted Lagrange and Hermite–Fejér interpolation on the real line , 1997 .

[29]  Giuseppe Mastroianni,et al.  On the convergence of an interpolatory product rule for evaluating Cauchy principal value integrals , 1987 .

[30]  G. P. M. Poppe,et al.  More efficient computation of the complex error function , 1990, TOMS.

[31]  V. Totik,et al.  Moduli of smoothness , 1987 .

[32]  G. P. M. Poppe,et al.  Algorithm 680: evaluation of the complex error function , 1990, TOMS.

[33]  D. Hunter,et al.  Some Gauss-type formulae for the evaluation of Cauchy principal values of integrals , 1972 .

[34]  I. M. Longman On the numerical evaluation of Cauchy principal values of integrals. , 1958 .

[35]  Ian H. Sloan,et al.  Product Integration Over Infinite Intervals I. Rules Based on the Zeros of Hermite Polynomials , 1983 .

[36]  Doron S. Lubinsky,et al.  Erratum: Christoffel functions, orthogonal polynomials, and Nevai's conjecture for Freud weights , 1992 .

[37]  Giuseppe Mastroianni,et al.  Lagrange Interpolation in Weighted Besov Spaces , 1999 .

[38]  Giuseppe Mastroianni,et al.  On the uniform convergence of Gaussian quadrature rules for Cauchy principal value integrals , 1989 .

[39]  P. E. Ricci,et al.  ERROR ESTIMATES FOR A CLASS OF INTEGRAL AND DISCRETE TRANSFORMS , 2000 .