Strong matching preclusion

The matching preclusion problem, introduced by Brigham et al. R.C. Brigham, F. Harary, E.C. Violin, and J. Yellen, Perfect-matching preclusion, Congressus Numerantium 174 (2005) 185?192, studies how to effectively make a graph have neither perfect matchings nor almost perfect matchings by deleting as small a number of edges as possible. Extending this concept, we consider a more general matching preclusion problem, called the strong matching preclusion, in which deletion of vertices is additionally permitted. We establish the strong matching preclusion number and all possible minimum strong matching preclusion sets for various classes of graphs.

[1]  Hyeong-Seok Lim,et al.  Fault-Hamiltonicity of hypercube-like interconnection networks , 2005, 19th IEEE International Parallel and Distributed Processing Symposium.

[2]  Hyeong-Seok Lim,et al.  Many-to-Many Disjoint Path Covers in the Presence of Faulty Elements , 2009, IEEE Transactions on Computers.

[3]  Sun-Yuan Hsieh,et al.  Conditional Edge-Fault Hamiltonicity of Matching Composition Networks , 2009, IEEE Transactions on Parallel and Distributed Systems.

[4]  Eddie Cheng,et al.  Conditional matching preclusion sets , 2009, Inf. Sci..

[5]  Jimmy J. M. Tan,et al.  The diagnosability of the matching composition network under the comparison diagnosis model , 2004, IEEE Transactions on Computers.

[6]  Eddie Cheng,et al.  Conditional matching preclusion for the alternating group graphs and split-stars , 2011, Int. J. Comput. Math..

[7]  David R. Guichard Perfect matchings in pruned grid graphs , 2008, Discret. Math..

[8]  E. Cheng,et al.  Matching preclusion for some interconnection networks , 2007 .

[9]  Norman Biggs,et al.  On Trivalent Graphs , 1971 .

[10]  J. A. Bondy,et al.  Graph Theory , 2008, Graduate Texts in Mathematics.

[11]  Jung-Heum Park Matching Preclusion Problem in Restricted HL-graphs and Recursive Circulant $G(2^m,4)$ , 2008 .

[12]  P. S. Nagendra Rao,et al.  A class of hypercube-like networks , 1993, Proceedings of 1993 5th IEEE Symposium on Parallel and Distributed Processing.

[13]  Kyung-Yong Chwa,et al.  Recursive circulants and their embeddings among hypercubes , 2000, Theor. Comput. Sci..

[14]  S. C. Locke,et al.  Perfect matchings after vertex deletions , 2007, Discret. Math..

[15]  Sang Hyuk Son,et al.  Conditional matching preclusion for hypercube-like interconnection networks , 2009, Theor. Comput. Sci..

[16]  Hyeong-Ah Choi,et al.  Graph Bipartization and via Minimization , 1989, SIAM J. Discret. Math..