Effects of Nanoparticle Geometry and Size Distribution on Diffusion Impedance of Battery Electrodes

The short diffusion lengths in insertion battery nanoparticles render the capacitive behavior of bounded diffusion, which is rarely observable with conventional larger particles, now accessible to impedance measurements. Coupled with improved geometrical characterization, this presents an opportunity to measure solid diffusion more accurately than the traditional approach of fitting Warburg circuit elements, by properly taking into account the particle geometry and size distribution. We revisit bounded diffusion impedance models and incorporate them into an overall impedance model for different electrode configurations. The theoretical models are then applied to experimental data of a silicon nanowire electrode to show the effects of including the actual nanowire geometry and radius distribution in interpreting the impedance data. From these results, we show that it is essential to account for the particle shape and size distribution to correctly interpret impedance data for battery electrodes. Conversely, it is also possible to solve the inverse problem and use the theoretical “impedance image” to infer the nanoparticle shape and/or size distribution, in some cases, more accurately than by direct image analysis. This capability could be useful, for example, in detecting battery degradation

[1]  Juan Bisquert,et al.  Theoretical models for ac impedance of finite diffusion layers exhibiting low frequency dispersion , 1999 .

[2]  D. Grahame,et al.  Fiftieth Anniversary: Mathematical Theory of the Faradaic Admittance Pseudocapacity and Polarization Resistance , 1952 .

[3]  D. Franceschetti,et al.  COMPACT AND DIFFUSE DOUBLE LAYER INTERACTION IN UNSUPPORTED SYSTEM SMALL-SIGNAL RESPONSE * , 1979 .

[4]  Jing Li,et al.  An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si , 2007 .

[5]  E. Barsoukov,et al.  Kinetics of lithium intercalation into carbon anodes: in situ impedance investigation of thickness and potential dependence , 1999 .

[6]  T. Jacobsen,et al.  Diffusion impedance in planar, cylindrical and spherical symmetry , 1995 .

[7]  D. Aurbach,et al.  Frumkin intercalation isotherm — a tool for the description of lithium insertion into host materials: a review , 1999 .

[8]  Sossina M. Haile,et al.  Impedance Spectroscopy as a Tool for Chemical and Electrochemical Analysis of Mixed Conductors: A Case Study of Ceria , 2005 .

[9]  E. Warburg,et al.  Ueber die Polarisationscapacität des Platins , 1901 .

[10]  T. Takamura,et al.  Evaluation of the Li insertion/extraction reaction rate at a vacuum-deposited silicon film anode , 2005 .

[11]  Wei Lai,et al.  Small-Signal Apparent Diffusion Impedance of Intercalation Battery Electrodes , 2011 .

[12]  M. Bazant,et al.  A method to extract potentials from the temperature dependence of Langmuir constants for clathrate-hydrates , 2000, physics/0011047.

[13]  T. Yamazaki,et al.  Correction to Nanoparticles of Fullerene C60 from Engineenng of Antiquity [The Journal of Physical Chemistry C , 2011 .

[14]  D. Franceschetti,et al.  Interpretation of Finite‐Length‐Warburg‐Type Impedances in Supported and Unsupported Electrochemical Cells with Kinetically Reversible Electrodes , 1991 .

[15]  Giorgio Parisi,et al.  Physica A: Statistical Mechanics and its Applications: Editorial note , 2005 .

[16]  Robert A. Huggins,et al.  Application of A-C Techniques to the Study of Lithium Diffusion in Tungsten Trioxide Thin Films , 1980 .

[17]  W. Sitte,et al.  Theory of galvanostatic processes in mixed conductors with arbitrary electronic transport numbers , 1996 .

[18]  Venkat R. Subramanian,et al.  Analytical solution for the impedance of porous electrodes , 2002 .

[19]  Lianwei Wang,et al.  Journal of Electroanalytical Chemistry , 1960, Nature.

[20]  D. Aurbach,et al.  Application of finite-diffusion models for the interpretation of chronoamperometric and electrochemical impedance responses of thin lithium insertion V2O5 electrodes , 2001 .

[21]  J. Schmidt,et al.  Studies on LiFePO4 as cathode material using impedance spectroscopy , 2011 .

[22]  Y. Pleskov,et al.  Lithium intercalation in thin amorphous-silicon films , 2006 .

[23]  D. Aurbach,et al.  SIMULTANEOUS MEASUREMENTS AND MODELING OF THE ELECTROCHEMICAL IMPEDANCE AND THE CYCLIC VOLTAMMETRIC CHARACTERISTICS OF GRAPHITE ELECTRODES DOPED WITH LITHIUM , 1997 .

[24]  Marc Doyle,et al.  Computer Simulations of the Impedance Response of Lithium Rechargeable Batteries , 2000 .

[25]  J. Randles Kinetics of rapid electrode reactions , 1947 .

[26]  A. Müller Journal of Physics Condensed Matter , 2008 .

[27]  R. Huggins Solid State Ionics , 1989 .

[28]  N. Imanishi,et al.  Li-ion diffusion in amorphous Si films prepared by RF magnetron sputtering: A comparison of using liquid and polymer electrolytes , 2010 .

[29]  M. A. Vorotyntsev,et al.  Potential distribution across the electroactive-polymer film between the metal and solution as a function of the film charging level , 1996 .

[30]  P. Lugol Annalen der Physik , 1906 .

[31]  Juan Bisquert,et al.  Impedance of constant phase element (CPE)-blocked diffusion in film electrodes , 1998 .

[32]  Doron Aurbach,et al.  Diffusion Coefficients of Lithium Ions during Intercalation into Graphite Derived from the Simultaneous Measurements and Modeling of Electrochemical Impedance and Potentiostatic Intermittent Titration Characteristics of Thin Graphite Electrodes , 1997 .

[33]  D. Aurbach,et al.  Two parallel diffusion paths model for interpretation of PITT and EIS responses from non-uniform intercalation electrodes , 2004 .

[34]  Journal of the Chemical Society , 1875, The British and Foreign Medico-Chirurgical Review.

[35]  Y. Pleskov,et al.  Lithium intercalation into amorphous-silicon thin films: An electrochemical-impedance study , 2006 .

[36]  Ying Xie,et al.  Kinetic study on LiFePO4-positive electrode material of lithium-ion battery , 2011 .

[37]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[38]  Ralph E. White,et al.  Estimation of Diffusion Coefficient of Lithium in Carbon Using AC Impedance Technique , 2002 .

[39]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[40]  D. Aurbach,et al.  In Situ Conductivity, Impedance Spectroscopy, and Ex Situ Raman Spectra of Amorphous Silicon during the Insertion/Extraction of Lithium , 2007 .

[41]  T. D. Hatchard,et al.  In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon , 2004 .

[42]  D. Aurbach,et al.  Impedance of a Single Intercalation Particle and of Non-Homogeneous, Multilayered Porous Composite Electrodes for Li-ion Batteries , 2004 .

[43]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[44]  Bernard A. Boukamp,et al.  Electrochemical impedance spectroscopy in solid state ionics: recent advances , 2004 .

[45]  John G. Ekerdt,et al.  Structure and Properties of Li―Si Alloys: A First-Principles Study , 2011 .

[46]  M. Doyle,et al.  The Impedance Response of a Porous Electrode Composed of Intercalation Particles , 2000 .

[47]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[48]  Minoru Umeda,et al.  Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode: Part II. Disordered carbon , 2001 .

[49]  M. Yoshio,et al.  Characterization of carbon-coated silicon: Structural evolution and possible limitations , 2003 .

[50]  Enge Wang,et al.  First principles study of lithium insertion in bulk silicon , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[51]  Richard K. Brow,et al.  Journal of the American Ceramic Society: Introduction , 2002 .

[52]  Yi Cui,et al.  Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes , 2009 .