Second-Order Invariant Domain Preserving Approximation of the Euler Equations Using Convex Limiting

A new second-order method for approximating the compressible Euler equations is introduced. The method preserves all the known invariant domains of the Euler system: positivity of the density, positivity of the internal energy and the local minimum principle on the specific entropy. The technique combines a first-order, invariant domain preserving, Guaranteed Maximum Speed method using a Graph Viscosity (GMS-GV1) with an invariant domain violating, but entropy consistent, high-order method. Invariant domain preserving auxiliary states, naturally produced by the GMS-GV1 method, are used to define local bounds for the high-order method which is then made invariant domain preserving via a convex limiting process. Numerical tests confirm the second-order accuracy of the new GMS-GV2 method in the maximum norm, where 2 stands for second-order. The proposed convex limiting is generic and can be applied to other approximation techniques and other hyperbolic systems.

[1]  Jan S. Hesthaven,et al.  From Electrostatics to Almost Optimal Nodal Sets for Polynomial Interpolation in a Simplex , 1998 .

[2]  J. Kraaijevanger Contractivity of Runge-Kutta methods , 1991 .

[3]  S. Osher,et al.  Uniformly High-Order Accurate Nonoscillatory Schemes. I , 1987 .

[4]  Antony Jameson,et al.  Origins and Further Development of the Jameson–Schmidt–Turkel Scheme , 2017 .

[5]  Yi Jiang,et al.  An Invariant-region-preserving (IRP) Limiter to DG Methods for Compressible Euler Equations , 2016 .

[6]  Jay P. Boris,et al.  Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works , 1973 .

[7]  Jean-Luc Guermond,et al.  Entropy viscosity method for nonlinear conservation laws , 2011, J. Comput. Phys..

[8]  Travis Thompson,et al.  A discrete commutator theory for the consistency and phase error analysis of semi-discrete C0 finite element approximations to the linear transport equation , 2016, J. Comput. Appl. Math..

[9]  Ami Harten,et al.  Convex Entropies and Hyperbolicity for General Euler Equations , 1998 .

[10]  Stefan Turek,et al.  Flux-Corrected Transport , 2005 .

[11]  Jean-Luc Guermond,et al.  Invariant Domains and Second-Order Continuous Finite Element Approximation for Scalar Conservation Equations , 2017, SIAM J. Numer. Anal..

[12]  M. Berger,et al.  Analysis of Slope Limiters on Irregular Grids , 2005 .

[13]  Thomas Eugene Voth,et al.  Generalized Fourier analyses of the advection–diffusion equation—Part I: one‐dimensional domains , 2004 .

[14]  Dmitri Kuzmin,et al.  Algebraic Flux Correction II. Compressible Euler Equations , 2005 .

[15]  J. Peraire,et al.  Finite Element Flux-Corrected Transport (FEM-FCT) for the Euler and Navier-Stokes equations , 1987 .

[16]  Chi-Wang Shu,et al.  On positivity preserving finite volume schemes for Euler equations , 1996 .

[17]  J. Szmelter Incompressible flow and the finite element method , 2001 .

[18]  Benoît Perthame,et al.  Maximum principle on the entropy and second-order kinetic schemes , 1994 .

[19]  D. Hoff Invariant regions for systems of conservation laws , 1985 .

[20]  Xiangxiong Zhang,et al.  A minimum entropy principle of high order schemes for gas dynamics equations , 2011, Numerische Mathematik.

[21]  D. Serre,et al.  Geometric structures, oscillations, and initial-boundary value problems , 2000 .

[22]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[23]  Dmitri Kuzmin,et al.  Synchronized flux limiting for gas dynamics variables , 2016, J. Comput. Phys..

[24]  Yong Yang,et al.  A Second-Order Maximum Principle Preserving Lagrange Finite Element Technique for Nonlinear Scalar Conservation Equations , 2014, SIAM J. Numer. Anal..

[25]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[26]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[27]  Stefan Turek,et al.  Flux correction tools for finite elements , 2002 .

[28]  H. Frid Maps of Convex Sets and Invariant Regions¶for Finite-Difference Systems¶of Conservation Laws , 2001 .

[29]  Xiangxiong Zhang,et al.  On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes , 2010, J. Comput. Phys..

[30]  David Wells,et al.  The deal.II library, version 8.5 , 2013, J. Num. Math..

[31]  Birte Schmidtmann,et al.  On third-order limiter functions for finite volume methods , 2014 .

[32]  Bojan Popov,et al.  Invariant Domains and First-Order Continuous Finite Element Approximation for Hyperbolic Systems , 2015, SIAM J. Numer. Anal..

[33]  Neil D. Sandham,et al.  Low-Dissipative High-Order Shock-Capturing Methods Using Characteristic-Based Filters , 1999 .

[34]  A. Harten On the symmetric form of systems of conservation laws with entropy , 1983 .

[35]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[36]  Tim Warburton,et al.  An explicit construction of interpolation nodes on the simplex , 2007 .

[37]  Benoît Perthame,et al.  A variant of Van Leer's method for multidimensional systems of conservation laws , 1994 .

[38]  D. Serre Systems of conservation laws , 1999 .

[39]  Richard Saurel,et al.  The Noble-Abel Stiffened-Gas equation of state , 2016 .

[40]  Mark A. Taylor,et al.  An Algorithm for Computing Fekete Points in the Triangle , 2000, SIAM J. Numer. Anal..

[41]  Bojan Popov,et al.  Fast estimation from above of the maximum wave speed in the Riemann problem for the Euler equations , 2015, J. Comput. Phys..

[42]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[43]  Jean-Luc Guermond,et al.  A correction technique for the dispersive effects of mass lumping for transport problems , 2013 .

[44]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .