Second-Order Invariant Domain Preserving Approximation of the Euler Equations Using Convex Limiting
暂无分享,去创建一个
Jean-Luc Guermond | Bojan Popov | Murtazo Nazarov | Ignacio Tomas | J. Guermond | I. Tomas | B. Popov | Murtazo Nazarov
[1] Jan S. Hesthaven,et al. From Electrostatics to Almost Optimal Nodal Sets for Polynomial Interpolation in a Simplex , 1998 .
[2] J. Kraaijevanger. Contractivity of Runge-Kutta methods , 1991 .
[3] S. Osher,et al. Uniformly High-Order Accurate Nonoscillatory Schemes. I , 1987 .
[4] Antony Jameson,et al. Origins and Further Development of the Jameson–Schmidt–Turkel Scheme , 2017 .
[5] Yi Jiang,et al. An Invariant-region-preserving (IRP) Limiter to DG Methods for Compressible Euler Equations , 2016 .
[6] Jay P. Boris,et al. Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works , 1973 .
[7] Jean-Luc Guermond,et al. Entropy viscosity method for nonlinear conservation laws , 2011, J. Comput. Phys..
[8] Travis Thompson,et al. A discrete commutator theory for the consistency and phase error analysis of semi-discrete C0 finite element approximations to the linear transport equation , 2016, J. Comput. Appl. Math..
[9] Ami Harten,et al. Convex Entropies and Hyperbolicity for General Euler Equations , 1998 .
[10] Stefan Turek,et al. Flux-Corrected Transport , 2005 .
[11] Jean-Luc Guermond,et al. Invariant Domains and Second-Order Continuous Finite Element Approximation for Scalar Conservation Equations , 2017, SIAM J. Numer. Anal..
[12] M. Berger,et al. Analysis of Slope Limiters on Irregular Grids , 2005 .
[13] Thomas Eugene Voth,et al. Generalized Fourier analyses of the advection–diffusion equation—Part I: one‐dimensional domains , 2004 .
[14] Dmitri Kuzmin,et al. Algebraic Flux Correction II. Compressible Euler Equations , 2005 .
[15] J. Peraire,et al. Finite Element Flux-Corrected Transport (FEM-FCT) for the Euler and Navier-Stokes equations , 1987 .
[16] Chi-Wang Shu,et al. On positivity preserving finite volume schemes for Euler equations , 1996 .
[17] J. Szmelter. Incompressible flow and the finite element method , 2001 .
[18] Benoît Perthame,et al. Maximum principle on the entropy and second-order kinetic schemes , 1994 .
[19] D. Hoff. Invariant regions for systems of conservation laws , 1985 .
[20] Xiangxiong Zhang,et al. A minimum entropy principle of high order schemes for gas dynamics equations , 2011, Numerische Mathematik.
[21] D. Serre,et al. Geometric structures, oscillations, and initial-boundary value problems , 2000 .
[22] A. Jameson,et al. Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .
[23] Dmitri Kuzmin,et al. Synchronized flux limiting for gas dynamics variables , 2016, J. Comput. Phys..
[24] Yong Yang,et al. A Second-Order Maximum Principle Preserving Lagrange Finite Element Technique for Nonlinear Scalar Conservation Equations , 2014, SIAM J. Numer. Anal..
[25] E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .
[26] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[27] Stefan Turek,et al. Flux correction tools for finite elements , 2002 .
[28] H. Frid. Maps of Convex Sets and Invariant Regions¶for Finite-Difference Systems¶of Conservation Laws , 2001 .
[29] Xiangxiong Zhang,et al. On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes , 2010, J. Comput. Phys..
[30] David Wells,et al. The deal.II library, version 8.5 , 2013, J. Num. Math..
[31] Birte Schmidtmann,et al. On third-order limiter functions for finite volume methods , 2014 .
[32] Bojan Popov,et al. Invariant Domains and First-Order Continuous Finite Element Approximation for Hyperbolic Systems , 2015, SIAM J. Numer. Anal..
[33] Neil D. Sandham,et al. Low-Dissipative High-Order Shock-Capturing Methods Using Characteristic-Based Filters , 1999 .
[34] A. Harten. On the symmetric form of systems of conservation laws with entropy , 1983 .
[35] W. Bangerth,et al. deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.
[36] Tim Warburton,et al. An explicit construction of interpolation nodes on the simplex , 2007 .
[37] Benoît Perthame,et al. A variant of Van Leer's method for multidimensional systems of conservation laws , 1994 .
[38] D. Serre. Systems of conservation laws , 1999 .
[39] Richard Saurel,et al. The Noble-Abel Stiffened-Gas equation of state , 2016 .
[40] Mark A. Taylor,et al. An Algorithm for Computing Fekete Points in the Triangle , 2000, SIAM J. Numer. Anal..
[41] Bojan Popov,et al. Fast estimation from above of the maximum wave speed in the Riemann problem for the Euler equations , 2015, J. Comput. Phys..
[42] Anders Logg,et al. Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .
[43] Jean-Luc Guermond,et al. A correction technique for the dispersive effects of mass lumping for transport problems , 2013 .
[44] S. Zalesak. Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .