A Broadband/Resonant Approach to Axion Dark Matter Detection

When ultralight axion dark matter encounters a static magnetic field, it sources an effective electric current that follows the magnetic field lines and oscillates at the axion Compton frequency. We propose a new experiment to detect this axion effective current. In the presence of axion dark matter, a large toroidal magnet will act like an oscillating current ring, whose induced magnetic flux can be measured by an external pickup loop inductively coupled to a SQUID magnetometer. We consider both resonant and broadband readout circuits and show that a broadband approach has advantages at small axion masses. We estimate the reach of this design, taking into account the irreducible sources of noise, and demonstrate potential sensitivity to axion dark matter with masses in the range of 10^{-14} eV to 10^{-6} eV. In particular, both the broadband and resonant strategies can probe the QCD axion with a GUT-scale decay constant.

[1]  M. Tobar,et al.  Axion Dark Matter Coupling to Resonant Photons via Magnetic Field. , 2015, Physical review letters.

[2]  S. Lamoreaux,et al.  Experimental Searches for the Axion and Axion-Like Particles , 2015, 1602.00039.

[3]  C. Hill Axion induced oscillating electric dipole moment of the electron , 2015, 1508.04083.

[4]  J. Gamboa,et al.  Parametric Resonance and Dark Matter Axion-Like Particles , 2015, 1506.02698.

[5]  C. Hill Axion induced oscillating electric dipole moments , 2015, 1504.01295.

[6]  V. Flambaum,et al.  Searching for dark matter and variation of fundamental constants with laser and maser interferometry. , 2014, Physical review letters.

[7]  K. Irwin,et al.  Radio for hidden-photon dark matter detection , 2014, 1411.7382.

[8]  D. Budker,et al.  Parity-violating interactions of cosmic fields with atoms, molecules, and nuclei: Concepts and calculations for laboratory searches and extracting limits , 2014, 1409.2564.

[9]  S. Lamoreaux,et al.  Future directions in the microwave cavity search for dark matter axions , 2014, 1405.3685.

[10]  J. Read The local dark matter density , 2014, 1404.1938.

[11]  Jihn E. Kim,et al.  Calculations of resonance enhancement factor in axion-search tube-experiments , 2014, 1403.1576.

[12]  V. Flambaum,et al.  Axion-induced effects in atoms, molecules, and nuclei: Parity nonconservation, anapole moments, electric dipole moments, and spin-gravity and spin-axion momentum couplings , 2013, 1312.6667.

[13]  D. Tanner,et al.  Proposal for axion dark matter detection using an LC circuit. , 2013, Physical review letters.

[14]  Michael J. Pivovaroff,et al.  Working Group Report: New Light Weakly Coupled Particles , 2013 .

[15]  A. Lobanov,et al.  WISPers from the Dark Side: Radio Probes of Axions and Hidden Photons , 2013, 1309.4170.

[16]  Dmitry Budker,et al.  Proposal for a Cosmic Axion Spin Precession Experiment (CASPEr) , 2013, 1306.6089.

[17]  P. Graham,et al.  New Observables for Direct Detection of Axion Dark Matter , 2013, 1306.6088.

[18]  John Clarke,et al.  Magnetic flux noise in dc SQUIDs: temperature and geometry dependence. , 2013, Physical review letters.

[19]  M. J. Pivovaroff,et al.  IAXO - The International Axion Observatory , 2013, 1302.3273.

[20]  A. Lobanov,et al.  Searching for WISPy Cold Dark Matter with a Dish Antenna , 2012, 1212.2970.

[21]  O. Baker,et al.  Prospects for searching axionlike particle dark matter with dipole, toroidal, and wiggler magnets , 2011, 1110.2180.

[22]  P. Graham,et al.  Axion dark matter detection with cold molecules , 2011, 1101.2691.

[23]  D B Tanner,et al.  SQUID-based microwave cavity search for dark-matter axions. , 2009, Physical review letters.

[24]  S. K. Lee,et al.  Calculation of magnetic field noise from high-permeability magnetic shields and conducting objects with simple geometry , 2007, 0709.2543.

[25]  E. Witten,et al.  Axions In String Theory , 2006, hep-th/0605206.

[26]  John S George,et al.  SQUID detected NMR in microtesla magnetic fields. , 2004, Journal of magnetic resonance (San Diego, Calif. 1997 : Print).

[27]  Robert McDermott,et al.  Microtesla MRI with a superconducting quantum interference device. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[28]  L. Rosenberg,et al.  Large-scale microwave cavity search for dark-matter axions , 2001 .

[29]  J. Hutchison,et al.  Gradiometer pick-up coil design for a low field SQUID-MRI system , 1999, Magnetic Resonance Materials in Physics, Biology and Medicine.

[30]  R. Dolesi,et al.  Thermal noise in a high Q cryogenic resonator , 1999 .

[31]  Dietmar Drung,et al.  Low‐noise high‐speed dc superconducting quantum interference device magnetometer with simplified feedback electronics , 1990 .

[32]  P. Sikivie Experimental Tests of the "INVISIBLE" Axion , 1983 .

[33]  Laurence F Abbott,et al.  A cosmological bound on the invisible axion , 1983 .

[34]  Michael Dine,et al.  The Not So Harmless Axion , 1983 .

[35]  John Preskill,et al.  Cosmology of the invisible axion , 1983 .

[36]  Michael Dine,et al.  A Simple Solution to the Strong CP Problem with a Harmless Axion , 1981 .

[37]  A. Vainshtein,et al.  Can Confinement Ensure Natural CP Invariance of Strong Interactions , 1980 .

[38]  John Clarke,et al.  Optimization of dc SQUID voltmeter and magnetometer circuits , 1979 .

[39]  Jihn E. Kim Weak Interaction Singlet and Strong CP Invariance , 1979 .

[40]  F. Wilczek Problem of Strong $P$ and $T$ Invariance in the Presence of Instantons , 1978 .

[41]  S. Weinberg A new light boson , 1978 .

[42]  R. Peccei,et al.  Constraints imposed by CP conservation in the presence of pseudoparticles , 1977 .

[43]  R. Peccei,et al.  CP Conservation in the Presence of Pseudoparticles , 1977 .

[44]  H. Lübbig,et al.  Current comparators with superconducting shields , 1974 .

[45]  J. E. Zimmerman,et al.  Sensitivity Enhancement of Superconducting Quantum Interference Devices through the Use of Fractional‐Turn Loops , 1971 .

[46]  J. Hutchison,et al.  Use of a DC SQUID receiver preamplifier in a low field MRI system , 1995, IEEE Transactions on Applied Superconductivity.

[47]  A. R. Zhitnitskij On possible suppression of the axion-hadron interactions , 1980 .

[48]  A. Zhitnitsky On Possible Suppression of the Axion Hadron Interactions. (In Russian) , 1980 .