Conversational based method for tweet contextualization

Bound to 140 characters, tweets are short and ambiguous by nature. It can be hard for a user without any kind of context to effectively understand what the tweet is about. Due to this restriction, it is, therefore, necessary to know the tweet’s context to make it easily understandable to a reader. In this paper, we treat the problem of tweet contextualization. We propose a specific method allowing to automatically contextualize tweets using information coming from social user interactions. Contrary to classical contextualization methods that only consider text information which is insufficient, since text information on Twitter is very sparse, we combine different types of signals (social, temporal, textual). Our experimental results validate the benefits of our approach and confirm that generated contexts contain relevant information with given tweet.

[1]  M. de Rijke,et al.  Adding semantics to microblog posts , 2012, WSDM '12.

[2]  Devin Gaffney #iranElection: quantifying online activism , 2010 .

[3]  Ken-ichi Kawarabayashi,et al.  Reply trees in Twitter: data analysis and branching process models , 2016, Social Network Analysis and Mining.

[4]  Mohamed Morchid,et al.  INEX 2012 Benchmark a Semantic Space for Tweets Contextualization , 2012, CLEF.

[5]  Patrice Bellot,et al.  Overview of the INEX 2010 Question Answering Track (QA@INEX) , 2010, INEX.

[6]  Rim Faiz,et al.  User-Tweet Interaction Model and Social Users Interactions for Tweet Contextualization , 2015, ICCCI.

[7]  Ravi Kumar,et al.  Dynamics of conversations , 2010, KDD.

[8]  Animesh Mukherjee,et al.  Investigation and modeling of the structure of texting language , 2007, International Journal of Document Analysis and Recognition (IJDAR).

[9]  Timothy W. Finin,et al.  Why we twitter: understanding microblogging usage and communities , 2007, WebKDD/SNA-KDD '07.

[10]  Rim Faiz,et al.  Social Users Interactions Detection Based on Conversational Aspects , 2015, New Trends in Intelligent Information and Database Systems.

[11]  Alan Ritter,et al.  Unsupervised Modeling of Twitter Conversations , 2010, NAACL.

[12]  Michael S. Bernstein,et al.  Eddi: interactive topic-based browsing of social status streams , 2010, UIST.

[13]  Suresh Venkatasubramanian,et al.  A Gentle Introduction to the Kernel Distance , 2011, ArXiv.

[14]  Jeffrey V. Nickerson,et al.  Discovering Context: Classifying Tweets through a Semantic Transform Based on Wikipedia , 2011, HCI.

[15]  Florian Boudin,et al.  Contextualisation automatique de Tweets à partir de Wikipédia , 2013, CORIA.

[16]  Yutaka Matsuo,et al.  Earthquake shakes Twitter users: real-time event detection by social sensors , 2010, WWW '10.

[17]  Qi Gao,et al.  Semantic Enrichment of Twitter Posts for User Profile Construction on the Social Web , 2011, ESWC.

[18]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[19]  Rim Faiz,et al.  Towards Events Tweet Contextualization Using Social Influence Model and Users Conversations , 2015, WIMS.

[20]  Florian Boudin,et al.  Effective Tweet Contextualization with Hashtags Performance Prediction and Multi-Document Summarization , 2013, CLEF.

[21]  Ngoc Thanh Nguyen,et al.  New Trends in Intelligent Information and Database Systems , 2015, New Trends in Intelligent Information and Database Systems.

[22]  Somnath Banerjee,et al.  A Hybrid Tweet Contextualization System using IR and Summarization , 2012, CLEF.

[23]  Fermín L. Cruz,et al.  Tweet categorization by combining content and structural knowledge , 2016, Inf. Fusion.

[24]  Stephen Dann,et al.  Twitter content classification , 2010, First Monday.

[25]  Patrice Bellot,et al.  Overview of the INEX 2012 Tweet Contextualization Track , 2012, CLEF.

[26]  Prasenjit Majumder,et al.  Passage Retrieval for Tweet Contextualization at INEX 2012 , 2012, CLEF.

[27]  Andrew Trotman,et al.  Comparative Evaluation of Focused Retrieval , 2010, Lecture Notes in Computer Science.

[28]  Anatole Gershman,et al.  Topical Clustering of Tweets , 2011 .

[29]  Matthew Michelson,et al.  Tweet Disambiguate Entities Retrieve Folksonomy SubTree Step 1 : Discover Categories Generate Topic Profile from SubTrees Step 2 : Discover Profile Topic Profile : “ English Football ” “ World Cup ” , 2010 .