Sum-of-squares Lower Bounds for Planted Clique

Finding cliques in random graphs and the closely related "planted" clique variant, where a clique of size k is planted in a random G(n,1/2) graph, have been the focus of substantial study in algorithm design. Despite much effort, the best known polynomial-time algorithms only solve the problem for k = Θ(√n). In this paper we study the complexity of the planted clique problem under algorithms from the Sum-Of-Squares hierarchy. We prove the first average case lower bound for this model: for almost all graphs in G(n,1/2), r rounds of the SOS hierarchy cannot find a planted k-clique unless k ≥ (√n/log n)1/rCr. Thus, for any constant number of rounds planted cliques of size no(1) cannot be found by this powerful class of algorithms. This is shown via an integrability gap for the natural formulation of maximum clique problem on random graphs for SOS and Lasserre hierarchies, which in turn follow from degree lower bounds for the Positivestellensatz proof system. We follow the usual recipe for such proofs. First, we introduce a natural "dual certificate" (also known as a "vector-solution" or "pseudo-expectation") for the given system of polynomial equations representing the problem for every fixed input graph. Then we show that the matrix associated with this dual certificate is PSD (positive semi-definite) with high probability over the choice of the input graph.This requires the use of certain tools. One is the theory of association schemes, and in particular the eigenspaces and eigenvalues of the Johnson scheme. Another is a combinatorial method we develop to compute (via traces) norm bounds for certain random matrices whose entries are highly dependent; we hope this method will be useful elsewhere.

[1]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[2]  Daniel M. Kane,et al.  k-Independent Gaussians Fool Polynomial Threshold Functions , 2010, 2011 IEEE 26th Annual Conference on Computational Complexity.

[3]  Santosh S. Vempala,et al.  Statistical Algorithms and a Lower Bound for Detecting Planted Cliques , 2012, J. ACM.

[4]  Grant Schoenebeck,et al.  Linear Level Lasserre Lower Bounds for Certain k-CSPs , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[5]  R. Latala Estimates of moments and tails of Gaussian chaoses , 2005, math/0505313.

[6]  Van H. Vu,et al.  On the Choice Number of Random Hypergraphs , 2000, Combinatorics, Probability and Computing.

[7]  Van H. Vu,et al.  A Large Deviation Result on the Number of Small Subgraphs of a Random Graph , 2001, Combinatorics, Probability and Computing.

[8]  Philippe Rigollet,et al.  Complexity Theoretic Lower Bounds for Sparse Principal Component Detection , 2013, COLT.

[9]  Sanjeev Arora,et al.  Computational complexity and information asymmetry in financial products , 2011, Commun. ACM.

[10]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[11]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[12]  Pavel A. Pevzner,et al.  Combinatorial Approaches to Finding Subtle Signals in DNA Sequences , 2000, ISMB.

[13]  Yuan Zhou,et al.  Approximability and proof complexity , 2012, SODA.

[14]  Rafa l Lata la Estimates of moments and tails of Gaussian chaoses , 2005 .

[15]  Avi Wigderson,et al.  Public-key cryptography from different assumptions , 2010, STOC '10.

[16]  Robert Krauthgamer,et al.  The Probable Value of the Lovász--Schrijver Relaxations for Maximum Independent Set , 2003, SIAM J. Comput..

[17]  Robert Krauthgamer,et al.  How hard is it to approximate the best Nash equilibrium? , 2009, SODA.

[18]  Robert Krauthgamer,et al.  Finding and certifying a large hidden clique in a semirandom graph , 2000, Random Struct. Algorithms.

[19]  Dmitrii V. Pasechnik,et al.  Complexity of semialgebraic proofs , 2002 .

[20]  Hanif D. Sherali,et al.  A Hierarchy of Relaxations Between the Continuous and Convex Hull Representations for Zero-One Programming Problems , 1990, SIAM J. Discret. Math..

[21]  Dima Grigoriev,et al.  Linear lower bound on degrees of Positivstellensatz calculus proofs for the parity , 2001, Theor. Comput. Sci..

[22]  Béla Bollobás,et al.  Random Graphs , 1985 .

[23]  G. Pisier,et al.  Non commutative Khintchine and Paley inequalities , 1991 .

[24]  Andrea Montanari,et al.  Improved Sum-of-Squares Lower Bounds for Hidden Clique and Hidden Submatrix Problems , 2015, COLT.

[25]  Dima Grigoriev,et al.  Complexity of Positivstellensatz proofs for the knapsack , 2002, computational complexity.

[26]  Alessandro Panconesi,et al.  Concentration of Measure for the Analysis of Randomized Algorithms , 2009 .

[27]  Warren P. Adams,et al.  A hierarchy of relaxation between the continuous and convex hull representations , 1990 .

[28]  Richard M. Wilson,et al.  A course in combinatorics , 1992 .

[29]  A. Rucinski When are small subgraphs of a random graph normally distributed? , 1988 .

[30]  EDWARD A. HIRSCH,et al.  COMPLEXITY OF SEMIALGEBRAIC PROOFS , 2003 .

[31]  Faperj Sums of random Hermitian matrices and an inequality by Rudelson , 2010 .

[32]  David Nualart Rodón,et al.  GAUSSIAN HILBERT SPACES (Cambridge Tracts in Mathematics 129) By SVANTE JANSON: 340 pp., £40.00, ISBN 0 521 56128 0 (Cambridge University Press, 1997) , 1998 .

[33]  Mark Jerrum,et al.  Large Cliques Elude the Metropolis Process , 1992, Random Struct. Algorithms.

[34]  Sanjeev Arora,et al.  Subexponential Algorithms for Unique Games and Related Problems , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[35]  Ryan O'Donnell,et al.  Some topics in analysis of boolean functions , 2008, STOC.

[36]  Madhur Tulsiani CSP gaps and reductions in the lasserre hierarchy , 2009, STOC '09.

[37]  Noga Alon,et al.  Testing k-wise and almost k-wise independence , 2007, STOC '07.

[38]  E. Artin Über die Zerlegung definiter Funktionen in Quadrate , 1927 .

[39]  Dima Grigoriev,et al.  Complexity of Null-and Positivstellensatz proofs , 2001, Ann. Pure Appl. Log..

[40]  V. Peña,et al.  Decoupling Inequalities for the Tail Probabilities of Multivariate $U$-Statistics , 1993, math/9309211.

[41]  Ludek Kucera,et al.  Expected Complexity of Graph Partitioning Problems , 1995, Discret. Appl. Math..

[42]  Alan M. Frieze,et al.  A new approach to the planted clique problem , 2008, FSTTCS.

[43]  J. Krivine,et al.  Anneaux préordonnés , 1964 .

[44]  Yuval Peres,et al.  Finding Hidden Cliques in Linear Time with High Probability , 2010, Combinatorics, Probability and Computing.

[45]  D. Nualart GAUSSIAN HILBERT SPACES (Cambridge Tracts in Mathematics 129) By SVANTE JANSON: 340 pp., £40.00, ISBN 0 521 56128 0 (Cambridge University Press, 1997) , 1998 .

[46]  K. Schmüdgen TheK-moment problem for compact semi-algebraic sets , 1991 .

[47]  G. Stengle A nullstellensatz and a positivstellensatz in semialgebraic geometry , 1974 .

[48]  Yuan Zhou,et al.  Hypercontractivity, sum-of-squares proofs, and their applications , 2012, STOC '12.

[49]  Andrzej Ruciflski When are small subgraphs of a random graph normally distributed , 1988 .

[50]  K. Schmüdgen TheK-moment problem for compact semi-algebraic sets , 1991 .

[51]  Joel A. Tropp,et al.  User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..

[52]  Aditya Bhaskara,et al.  Polynomial integrality gaps for strong SDP relaxations of Densest k-subgraph , 2011, SODA.

[53]  Monique Laurent,et al.  Lower Bound for the Number of Iterations in Semidefinite Hierarchies for the Cut Polytope , 2003, Math. Oper. Res..

[54]  Prasad Raghavendra,et al.  Rounding Semidefinite Programming Hierarchies via Global Correlation , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[55]  Marie-Françoise Roy,et al.  Real algebraic geometry , 1992 .

[56]  Rudolf Ahlswede,et al.  Strong converse for identification via quantum channels , 2000, IEEE Trans. Inf. Theory.

[57]  N. Alon,et al.  Finding a large hidden clique in a random graph , 1998 .

[58]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[59]  Venkatesan Guruswami,et al.  Lasserre Hierarchy, Higher Eigenvalues, and Approximation Schemes for Graph Partitioning and Quadratic Integer Programming with PSD Objectives , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.