RSN1-tt(NP) Distinguishes Robust Many-One and Turing Completeness

Abstract. Do complexity classes have many-one complete sets if and only if they have Turing-complete sets? We prove that there is a relativized world in which a relatively natural complexity class—namely, a downward closure of NP, $ {{\rm R}_{1\mbox{-}{tt}}^{\cal SN}({\rm NP})} $ —has Turing-complete sets but has no many-one complete sets. In fact, we show that in the same relativized world this class has 2-truth-table complete sets but lacks 1-truth-table complete sets. As part of the groundwork for our result, we prove that $ {{\rm R}_{1\mbox{-}{tt}}^{\cal SN}({\rm NP})} $ has many equivalent forms having to do with ordered and parallel access to NP and NP ∩ coNP.

[1]  Alan L. Selman,et al.  Complexity Measures for Public-Key Cryptosystems , 1988, SIAM J. Comput..

[2]  Alan L. Selman,et al.  A Taxonomy of Complexity Classes of Functions , 1994, J. Comput. Syst. Sci..

[3]  Edith Hemaspaandra,et al.  A Downward Collapse within the Polynomial Hierarchy , 1999, SIAM J. Comput..

[4]  Jin-Yi Cai,et al.  Promises and fault-tolerant database access , 1993 .

[5]  Yuri Gurevich,et al.  Algebras of feasible functions , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[6]  Craig A. Rich,et al.  Positive Relativizations of the P = ? NP Problem , 1989, J. Comput. Syst. Sci..

[7]  Pierluigi Crescenzi,et al.  A Uniform Approach to Define Complexity Classes , 1992, Theor. Comput. Sci..

[8]  Ronald V. Book,et al.  Positive Relativizations of Complexity Classes , 1983, SIAM J. Comput..

[9]  Lance Fortnow,et al.  Two Queries , 1999, J. Comput. Syst. Sci..

[10]  Jim Kadin The polynomial time hierarchy collapses if the Boolean hierarchy collapses , 1988, [1988] Proceedings. Structure in Complexity Theory Third Annual Conference.

[11]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[12]  Michael Sipser,et al.  On Relativization and the Existence of Complete Sets , 1982, ICALP.

[13]  Osamu Watanabe,et al.  On polynomial time bounded truth-table reducibility of NP sets to sparse sets , 1990, STOC '90.

[14]  John Gill,et al.  Relativizations of the P =? NP Question , 1975, SIAM J. Comput..

[15]  Rüdiger Reischuk,et al.  Proceedings of the 14th Annual Symposium on Theoretical Aspects of Computer Science , 1996 .

[16]  Richard Chang,et al.  Commutative queries , 1997, Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems.

[17]  Klaus W. Wagner,et al.  Bounded Query Classes , 1990, SIAM J. Comput..

[18]  Michael R. Fellows,et al.  Self-witnessing polynomial-time complexity and prime factorization , 1992, Des. Codes Cryptogr..

[19]  Bernd Borchert Predicate classes, promise classe, and the acceptance power of regular languages , 1994 .

[20]  Mihalis Yannakakis,et al.  The complexity of facets (and some facets of complexity) , 1982, STOC '82.

[21]  Edith Hemaspaandra,et al.  Translating Equality Downwards , 1999, ArXiv.

[22]  D. C. Cooper,et al.  Theory of Recursive Functions and Effective Computability , 1969, The Mathematical Gazette.

[23]  Pierluigi Crescenzi,et al.  Introduction to the theory of complexity , 1994, Prentice Hall international series in computer science.

[24]  S. Homer,et al.  On reductions of NP sets to sparse sets , 1991, [1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference.

[25]  Jack H. Lutz,et al.  Cook Versus Karp-Levin: Separating Completeness Notions if NP is not Small , 1996, Theor. Comput. Sci..

[26]  Leonard M. Adleman,et al.  Recognizing primes in random polynomial time , 1987, STOC.

[27]  Luc Longpré,et al.  Cook Reducibility is Faster than Karp Reduciblity in NP , 1990, J. Comput. Syst. Sci..

[28]  Edith Hemaspaandra,et al.  Query Order in the Polynomial Hierarchy , 1997, FCT.

[29]  Klaus W. Wagner,et al.  The Difference and Truth-Table Hierarchies for NP , 1987, RAIRO Theor. Informatics Appl..

[30]  Victor L. Selivanov Two Refinements of the Polynomial Hierarcht , 1994, STACS.

[31]  Lane A. Hemaspaandra,et al.  Query Order , 1998, SIAM J. Comput..

[32]  Craig Chambers,et al.  Predicate Classes , 1993, ECOOP.

[33]  Edith Hemaspaandra,et al.  RSN1-tt(NP) Distinguishes Robust Many-One and Turing Completeness , 1997, CIAC.

[34]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[35]  Alan L. Selman,et al.  Polynomial Time Enumeration Reducibility , 1978, SIAM J. Comput..

[36]  Klaus Ambos-Spies A Note on the Complete Problems for Complexity Classes , 1986, Inf. Process. Lett..

[37]  Nikolai K. Vereshchagin,et al.  Banishing Robust Turing Completeness , 1992, LFCS.

[38]  Nancy A. Lynch,et al.  Comparison of polynomial-time reducibilities , 1974, STOC '74.

[39]  Timothy J. Long Strong Nondeterministic Polynomial-Time Reducibilities , 1982, Theor. Comput. Sci..

[40]  Osamu Watanabe,et al.  On polynomial time Turing and many-one completeness in PSPACE , 1989, [1989] Proceedings. Structure in Complexity Theory Fourth Annual Conference.

[41]  Juris Hartmanis,et al.  Complexity Classes without Machines: On Complete Languages for UP , 1986, Theor. Comput. Sci..

[42]  Juris Hartmanis,et al.  The Boolean Hierarchy I: Structural Properties , 1988, SIAM J. Comput..