Leadership groups on Social Network Sites based on Personalized PageRank

In this paper we present a new framework to identify leaders on an SNS using the Personalized PageRank vector. The methodology is based in the concept of Leadership group recently introduced by one of the authors. We show how to analyze the structure of the Leadership group as a function of a single parameter. Zachary’s network and a Facebook university network are used to illustrate the applicability of the model. As an application we introduce some new concepts such as the probability to be a leader, a classication of networks and the concept of best potential friend.

[1]  Sepandar D. Kamvar,et al.  An Analytical Comparison of Approaches to Personalizing PageRank , 2003 .

[2]  David F. Gleich,et al.  Random Alpha PageRank , 2009, Internet Math..

[3]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[4]  Francisco Pedroche Sánchez,et al.  Competitivity groups on social network sites , 2010, Math. Comput. Model..

[5]  W. Zachary,et al.  An Information Flow Model for Conflict and Fission in Small Groups , 1977, Journal of Anthropological Research.

[6]  Stefano Allesina,et al.  Googling Food Webs: Can an Eigenvector Measure Species' Importance for Coextinctions? , 2009, PLoS Comput. Biol..

[7]  Deepayan Chakrabarti,et al.  Preserving Personalized Pagerank in Subgraphs , 2011, ICML.

[8]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[9]  Taher H. Haveliwala Topic-Sensitive PageRank: A Context-Sensitive Ranking Algorithm for Web Search , 2003, IEEE Trans. Knowl. Data Eng..

[10]  Jennifer Widom,et al.  Scaling personalized web search , 2003, WWW '03.

[11]  F. Pedroche,et al.  MÉTODOS DE CÁLCULO DEL VECTOR PAGERANK , 2008 .

[12]  Sebastiano Vigna,et al.  PageRank: Functional dependencies , 2009, TOIS.

[13]  Jimmy J. Lin,et al.  PageRank without hyperlinks: Reranking with PubMed related article networks for biomedical text retrieval , 2008, BMC Bioinformatics.

[14]  Siu-Ming Yiu,et al.  Filtering of false positive microRNA candidates by a clustering-based approach , 2008, BMC Bioinformatics.

[15]  Mason A. Porter,et al.  Comparing Community Structure to Characteristics in Online Collegiate Social Networks , 2008, SIAM Rev..

[16]  Mason A. Porter,et al.  Community Structure in Online Collegiate Social Networks , 2008 .

[17]  Amy Nicole Langville,et al.  Google's PageRank and beyond - the science of search engine rankings , 2006 .

[18]  Christos Faloutsos,et al.  Fast Random Walk with Restart and Its Applications , 2006, Sixth International Conference on Data Mining (ICDM'06).

[19]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[20]  Filippo Radicchi,et al.  Who Is the Best Player Ever? A Complex Network Analysis of the History of Professional Tennis , 2011, PloS one.

[21]  Andrew Trotman,et al.  Sound and complete relevance assessment for XML retrieval , 2008, TOIS.

[22]  Zhoujun Li,et al.  Mining and modeling linkage information from citation context for improving biomedical literature retrieval , 2011, Inf. Process. Manag..

[23]  A. Pentland,et al.  Computational Social Science , 2009, Science.

[24]  Konstantin Avrachenkov,et al.  Monte Carlo Methods for Top-k Personalized PageRank Lists and Name Disambiguation , 2010, ArXiv.