Galaxy number counts to second order and their bispectrum

We determine the number counts to second order in cosmological perturbation theory in the Poisson gauge and allowing for anisotropic stress. The calculation is performed using an innovative approach based on the recently proposed ``geodesic light-cone" gauge. This allows us to determine the number counts in a purely geometric way, without using Einstein's equation. The result is valid for general dark energy models and (most) modified gravity models. We then evaluate numerically some relevant contributions to the number counts bispectrum. In particular we consider the terms involving the density, redshift space distortion and lensing.

[1]  M. Zaldarriaga,et al.  Beyond the Linear-Order Relativistic Effect in Galaxy Clustering: Second-Order Gauge-Invariant Formalism , 2014, 1406.4140.

[2]  G. Marozzi The luminosity distance–redshift relation up to second order in the Poisson gauge with anisotropic stress , 2014, 1406.1135.

[3]  R. Maartens,et al.  Observed galaxy number counts on the lightcone up to second order: II. Derivation , 2014, 1406.0319.

[4]  R. Maartens,et al.  Observed galaxy number counts on the lightcone up to second order: I. Main result , 2014, 1405.4403.

[5]  Adam D. Myers,et al.  Baryon acoustic oscillations in the Lyα forest of BOSS DR11 quasars , 2014, 1404.1801.

[6]  J. Frieman Probing the accelerating universe , 2014 .

[7]  R. Maartens,et al.  Nonlinear relativistic corrections to cosmological distances, redshift and gravitational lensing magnification: II. Derivation , 2014, 1402.1933.

[8]  R. Durrer,et al.  Value of H(0) in the inhomogeneous universe. , 2014, Physical review letters.

[9]  Ashley J. Ross,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Measuring growth rate and geometry with anisotropic clustering , 2013, 1312.4899.

[10]  J. Lesgourgues,et al.  Cosmological parameter estimation with large scale structure observations , 2013, 1308.6186.

[11]  G. Veneziano,et al.  An exact Jacobi map in the geodesic light-cone gauge , 2013, 1308.4935.

[12]  J. Lesgourgues,et al.  The CLASSgal code for relativistic cosmological large scale structure , 2013, 1307.1459.

[13]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[14]  G. W. Pratt,et al.  Planck 2013 results. XV. CMB power spectra and likelihood , 2013, 1303.5075.

[15]  R. B. Barreiro,et al.  Planck 2013 results. III. LFI systematic uncertainties , 2013, 1303.5064.

[16]  G. Veneziano,et al.  Average and dispersion of the luminosity-redshift relation in the concordance model , 2013, 1302.0740.

[17]  G. Veneziano,et al.  The second-order luminosity-redshift relation in a generic inhomogeneous cosmology , 2012, 1209.4326.

[18]  R. Maartens,et al.  Nonlinear relativistic corrections to cosmological distances, redshift and gravitational lensing magnification: I. Key results , 2012, 1207.2109.

[19]  G. Veneziano,et al.  Do stochastic inhomogeneities affect dark-energy precision measurements? , 2012, Physical review letters.

[20]  G. Veneziano,et al.  Backreaction on the luminosity-redshift relation from gauge invariant light-cone averaging , 2012, 1202.1247.

[21]  F. Bernardeau,et al.  Cosmic shear bispectrum from second-order perturbations in general relativity , 2011, 1112.4430.

[22]  R. Durrer,et al.  What galaxy surveys really measure , 2011, 1105.5280.

[23]  Anthony Challinor,et al.  The linear power spectrum of observed source number counts , 2011, 1105.5292.

[24]  G. Veneziano,et al.  Light-cone averaging in cosmology: formalism and applications , 2011, 1104.1167.

[25]  Jaiyul Yoo General Relativistic Description of the Observed Galaxy Power Spectrum: Do We Understand What We Measure? , 2010, 1009.3021.

[26]  Institute for Advanced Study,et al.  New perspective on galaxy clustering as a cosmological probe: General relativistic effects , 2009, 0907.0707.

[27]  R. Maartens,et al.  The cosmological background of vector modes , 2008, 0812.1349.

[28]  R. Durrer,et al.  The cosmic microwave background: the history of its experimental investigation and its significance for cosmology , 2008, 1506.01907.

[29]  D. Wands,et al.  Cosmological gravitational wave background from primordial density perturbations , 2006, gr-qc/0612013.

[30]  S. Matarrese,et al.  Second-Order Cosmological Perturbations from Inflation , 2002, astro-ph/0209156.

[31]  S. Colombi,et al.  Large scale structure of the universe and cosmological perturbation theory , 2001, astro-ph/0112551.

[32]  Thorsten Gerber,et al.  Handbook Of Mathematical Functions , 2016 .

[33]  J. Silk,et al.  Cosmology and large scale structure , 1996 .

[34]  Cosmology and large scale structure , 1996 .

[35]  L. Bombelli,et al.  Perfect fluid perturbations of cosmological spacetimes in Stewart's variables , 1994 .

[36]  C. Alcock Gravitational lenses , 1982, Nature.