An O(N log2N) alternating-direction finite difference method for two-dimensional fractional diffusion equations

Fractional diffusion equations model phenomena exhibiting anomalous diffusion that cannot be modeled accurately by the second-order diffusion equations. Because of the nonlocal property of fractional differential operators, the numerical methods for fractional diffusion equations often generate dense or even full coefficient matrices. Consequently, the numerical solution of these methods often require computational work of O(N^3) per time step and memory of O(N^2) for where N is the number of grid points. In this paper we develop a fast alternating-direction implicit finite difference method for space-fractional diffusion equations in two space dimensions. The method only requires computational work of O(N log^2N) per time step and memory of O(N), while retaining the same accuracy and approximation property as the regular finite difference method with Gaussian elimination. Our preliminary numerical example runs for two dimensional model problem of intermediate size seem to indicate the observations: To achieve the same accuracy, the new method has a significant reduction of the CPU time from more than 2 months and 1 week consumed by a traditional finite difference method to 1.5h, using less than one thousandth of memory the standard method does. This demonstrates the utility of the method.

[1]  Michael G. Akritas,et al.  Recent Advances and Trends in Nonparametric Statistics , 2003 .

[2]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[3]  V. Ervin,et al.  Variational solution of fractional advection dispersion equations on bounded domains in ℝd , 2007 .

[4]  A. Böttcher,et al.  Introduction to Large Truncated Toeplitz Matrices , 1998 .

[5]  Stevens,et al.  Self-similar transport in incomplete chaos. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  Donald M. Reeves,et al.  Transport of conservative solutes in simulated fracture networks: 2. Ensemble solute transport and the correspondence to operator‐stable limit distributions , 2008 .

[7]  Robert M. Gray,et al.  Toeplitz and Circulant Matrices: A Review , 2005, Found. Trends Commun. Inf. Theory.

[8]  D. Benson,et al.  Application of a fractional advection‐dispersion equation , 2000 .

[9]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[10]  M. Meerschaert,et al.  Finite difference methods for two-dimensional fractional dispersion equation , 2006 .

[11]  Mark M. Meerschaert,et al.  Nonparametric methods for heavy tailed vector data: A survey with applications from finance and hydrology , 2003 .

[12]  Igor M. Sokolov,et al.  ANOMALOUS TRANSPORT IN EXTERNAL FIELDS : CONTINUOUS TIME RANDOM WALKS AND FRACTIONAL DIFFUSION EQUATIONS EXTENDED , 1998 .

[13]  V. Ervin,et al.  Variational formulation for the stationary fractional advection dispersion equation , 2006 .

[14]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[15]  Norbert Heuer,et al.  Numerical Approximation of a Time Dependent, Nonlinear, Space-Fractional Diffusion Equation , 2007, SIAM J. Numer. Anal..

[16]  Yang Zhang,et al.  A finite difference method for fractional partial differential equation , 2009, Appl. Math. Comput..

[17]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[18]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[19]  David A. Benson,et al.  On Using Random Walks to Solve the Space-Fractional Advection-Dispersion Equations , 2006 .

[20]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[21]  Ercília Sousa,et al.  Finite difference approximations for a fractional advection diffusion problem , 2009, J. Comput. Phys..

[22]  W. Gragg,et al.  Superfast solution of real positive definite toeplitz systems , 1988 .

[23]  Zhaoxia Yang,et al.  Finite difference approximations for the fractional advection-diffusion equation , 2009 .

[24]  J. Klafter,et al.  Anomalous diffusion spreads its wings , 2005 .

[25]  J. P. Roop Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R 2 , 2006 .

[26]  E. Montroll,et al.  Anomalous transit-time dispersion in amorphous solids , 1975 .

[27]  Richard S. Varga,et al.  Matrix Iterative Analysis , 2000, The Mathematical Gazette.

[28]  D. Benson,et al.  Operator Lévy motion and multiscaling anomalous diffusion. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Mingrong Cui,et al.  Compact finite difference method for the fractional diffusion equation , 2009, J. Comput. Phys..

[30]  X. Li,et al.  Existence and Uniqueness of the Weak Solution of the Space-Time Fractional Diffusion Equation and a Spectral Method Approximation , 2010 .

[31]  M. Meerschaert,et al.  Finite difference approximations for two-sided space-fractional partial differential equations , 2006 .

[32]  Diego A. Murio,et al.  Implicit finite difference approximation for time fractional diffusion equations , 2008, Comput. Math. Appl..

[33]  I. Podlubny Fractional differential equations , 1998 .

[34]  Enrico Scalas,et al.  Waiting-times and returns in high-frequency financial data: an empirical study , 2002, cond-mat/0203596.

[35]  Raymond H. Chan,et al.  Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..

[36]  Hong Wang,et al.  A direct O(N log2 N) finite difference method for fractional diffusion equations , 2010, J. Comput. Phys..

[37]  Hans-Peter Scheffler,et al.  Random walk approximation of fractional-order multiscaling anomalous diffusion. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  R. Magin Fractional Calculus in Bioengineering , 2006 .

[39]  Bruce J. West,et al.  Lévy dynamics of enhanced diffusion: Application to turbulence. , 1987, Physical review letters.

[40]  D. Benson,et al.  Multidimensional advection and fractional dispersion. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[41]  D. Benson,et al.  The fractional‐order governing equation of Lévy Motion , 2000 .

[42]  Gene H. Golub,et al.  Matrix computations , 1983 .

[43]  Fawang Liu,et al.  Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation , 2009, Appl. Math. Comput..

[44]  B. Henry,et al.  The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .

[45]  Peter Richmond,et al.  Waiting time distributions in financial markets , 2002 .

[46]  W. Gragg,et al.  The generalized Schur algorithm for the superfast solution of Toeplitz systems , 1987 .

[47]  Vickie E. Lynch,et al.  Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model , 2001 .

[48]  James W. Kirchner,et al.  implications for contaminant transport in catchments , 2000 .