Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System

[1]  Sita J. Saunders,et al.  An updated evolutionary classification of CRISPR–Cas systems , 2015, Nature Reviews Microbiology.

[2]  Wenyan Jiang,et al.  CRISPR-Cas: New Tools for Genetic Manipulations from Bacterial Immunity Systems. , 2015, Annual review of microbiology.

[3]  Naomi Attar Bacterial evolution: An intriguing new bacterial phylum , 2015, Nature Reviews Microbiology.

[4]  Jennifer A. Doudna,et al.  A Cas9–guide RNA complex preorganized for target DNA recognition , 2015, Science.

[5]  Malcolm F. White,et al.  Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity , 2015, FEMS microbiology reviews.

[6]  Alexey Drozdetskiy,et al.  JPred4: a protein secondary structure prediction server , 2015, Nucleic Acids Res..

[7]  David A. Scott,et al.  In vivo genome editing using Staphylococcus aureus Cas9 , 2015, Nature.

[8]  E. Lander,et al.  Development and Applications of CRISPR-Cas 9 for Genome Engineering , 2015 .

[9]  J. Vogel,et al.  Investigating CRISPR RNA Biogenesis and Function Using RNA-seq. , 2015, Methods in molecular biology.

[10]  Eugene V Koonin,et al.  Annotation and Classification of CRISPR-Cas Systems. , 2015, Methods in molecular biology.

[11]  Josée Dostie,et al.  Protospacer Adjacent Motif (PAM)-Distal Sequences Engage CRISPR Cas9 DNA Target Cleavage , 2014, PloS one.

[12]  S. Mulepati,et al.  Crystal structure of a CRISPR RNA–guided surveillance complex bound to a ssDNA target , 2014, Science.

[13]  Stan J. J. Brouns,et al.  Crystal structure of the CRISPR RNA–guided surveillance complex from Escherichia coli , 2014, Science.

[14]  E. Lander,et al.  Development and Applications of CRISPR-Cas9 for Genome Engineering , 2014, Cell.

[15]  Rodolphe Barrangou,et al.  CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. , 2014, Molecular cell.

[16]  Shiraz A Shah,et al.  CRISPR adaptive immune systems of Archaea , 2014, RNA biology.

[17]  Feng Zhang,et al.  Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA , 2014, Cell.

[18]  J. Keith Joung,et al.  Improving CRISPR-Cas nuclease specificity using truncated guide RNAs , 2014, Nature Biotechnology.

[19]  Eli J. Fine,et al.  DNA targeting specificity of RNA-guided Cas9 nucleases , 2013, Nature Biotechnology.

[20]  Rotem Sorek,et al.  CRISPR-mediated adaptive immune systems in bacteria and archaea. , 2013, Annual review of biochemistry.

[21]  Jörg Vogel,et al.  Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. , 2013, Molecular cell.

[22]  Emmanuelle Charpentier,et al.  The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems , 2013, RNA biology.

[23]  Marcello Maresca,et al.  Obligate Ligation-Gated Recombination (ObLiGaRe): Custom-designed nuclease-mediated targeted integration through nonhomologous end joining , 2013, Genome research.

[24]  R. Barrangou,et al.  In vitro reconstitution of Cascade‐mediated CRISPR immunity in Streptococcus thermophilus , 2013, The EMBO journal.

[25]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[26]  Feng Zhang,et al.  CRISPR-assisted editing of bacterial genomes , 2013, Nature Biotechnology.

[27]  K. Heuner,et al.  First indication for a functional CRISPR/Cas system in Francisella tularensis. , 2013, International journal of medical microbiology : IJMM.

[28]  R. Barrangou,et al.  Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria , 2012, Proceedings of the National Academy of Sciences.

[29]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[30]  Peter F. Stadler,et al.  ViennaRNA Package 2.0 , 2011, Algorithms for Molecular Biology.

[31]  Philippe Horvath,et al.  The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli , 2011, Nucleic acids research.

[32]  Stan J. J. Brouns,et al.  Evolution and classification of the CRISPR–Cas systems , 2011, Nature Reviews Microbiology.

[33]  W. Hauswirth,et al.  Efficient mutagenesis of the rhodopsin gene in rod photoreceptor neurons in mice , 2011, Nucleic acids research.

[34]  J. Vogel,et al.  CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III , 2011, Nature.

[35]  Philippe Horvath,et al.  The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA , 2010, Nature.

[36]  Paramvir S. Dehal,et al.  FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments , 2010, PloS one.

[37]  R. Barrangou,et al.  CRISPR/Cas, the Immune System of Bacteria and Archaea , 2010, Science.

[38]  B. Graveley,et al.  RNA-Guided RNA Cleavage by a CRISPR RNA-Cas Protein Complex , 2009, Cell.

[39]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[40]  J. García-Martínez,et al.  Short motif sequences determine the targets of the prokaryotic CRISPR defence system. , 2009, Microbiology.

[41]  L. Marraffini,et al.  CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA , 2008, Science.

[42]  Stan J. J. Brouns,et al.  Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes , 2008, Science.

[43]  Ibtissem Grissa,et al.  CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats , 2007, Nucleic Acids Res..

[44]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[45]  Robert C. Edgar,et al.  PILER-CR: Fast and accurate identification of CRISPR repeats , 2007, BMC Bioinformatics.

[46]  Johannes Söding,et al.  HHsenser: exhaustive transitive profile search using HMM–HMM comparison , 2006, Nucleic Acids Res..

[47]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[48]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[49]  Tomoaki Tamaki,et al.  Sequence of Plasmodium falciparum chromosome 12 , 2002, Nature.

[50]  R. Gwilliam,et al.  Sequence of Plasmodium falciparum chromosomes 1, 3–9 and 13 , 2002, Nature.

[51]  Jonathan E. Allen,et al.  Sequence of Plasmodium falciparum chromosomes 2, 10, 11 and 14 , 2002, Nature.

[52]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[53]  J. Clark,et al.  Novel non-templated nucleotide addition reactions catalyzed by procaryotic and eucaryotic DNA polymerases. , 1988, Nucleic acids research.