Myc's broad reach.

The role of the myc gene family in the biology of normal and cancer cells has been intensively studied since the early 1980s. myc genes, responding to diverse external and internal signals, express transcription factors (c-, N-, and L-Myc) that heterodimerize with Max, bind DNA, and modulate expression of a specific set of target genes. Over the last few years, expression profiling, genomic binding studies, and genetic analyses in mammals and Drosophila have led to an expanded view of Myc function. This review is focused on two major aspects of Myc: the nature of the genes and pathways that are targeted by Myc, and the role of Myc in stem cell and cancer biology.

[1]  P. Gallant,et al.  Max-independent functions of Myc in Drosophila melanogaster , 2008, Nature Genetics.

[2]  A. Trumpp,et al.  Placental rescue reveals a sole requirement for c-Myc in embryonic erythroblast survival and hematopoietic stem cell function , 2008, Development.

[3]  Steven Hahn,et al.  Transcriptional regulation Meeting on Regulatory Mechanisms in Eukaryotic Transcription , 2008 .

[4]  A. Iavarone,et al.  The HECT-domain ubiquitin ligase Huwe1 controls neural differentiation and proliferation by destabilizing the N-Myc oncoprotein , 2008, Nature Cell Biology.

[5]  J. Blenis,et al.  Activation of PI3K/Akt and MAPK pathways regulates Myc-mediated transcription by phosphorylating and promoting the degradation of Mad1 , 2008, Proceedings of the National Academy of Sciences.

[6]  C. Lengner,et al.  Direct Reprogramming of Terminally Differentiated Mature B Lymphocytes to Pluripotency , 2008, Cell.

[7]  N. Neretti,et al.  The oncogene c-Myc coordinates regulation of metabolic networks to enable rapid cell cycle entry , 2008, Cell cycle.

[8]  Eran Segal,et al.  Module map of stem cell genes guides creation of epithelial cancer stem cells. , 2008, Cell stem cell.

[9]  S. Orkin,et al.  An Extended Transcriptional Network for Pluripotency of Embryonic Stem Cells , 2008, Cell.

[10]  J. Delrow,et al.  Drosophila growth and development in the absence of dMyc and dMnt. , 2008, Developmental biology.

[11]  F. Watt,et al.  MYC in mammalian epidermis: how can an oncogene stimulate differentiation? , 2008, Nature Reviews Cancer.

[12]  B. Clurman,et al.  FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation , 2008, Nature Reviews Cancer.

[13]  Claude C. Warzecha,et al.  The putative cancer stem cell marker USP22 is a subunit of the human SAGA complex required for activated transcription and cell-cycle progression. , 2008, Molecular cell.

[14]  Birgit Samans,et al.  MYCN regulates oncogenic MicroRNAs in neuroblastoma , 2007, International journal of cancer.

[15]  A. Teleman,et al.  Nutritional control of protein biosynthetic capacity by insulin via Myc in Drosophila. , 2008, Cell metabolism.

[16]  Steven Henikoff,et al.  Nucleosome destabilization in the epigenetic regulation of gene expression , 2008, Nature Reviews Genetics.

[17]  J. Gurdon,et al.  Epigenetic memory of an active gene state depends on histone H3.3 incorporation into chromatin in the absence of transcription , 2008, Nature Cell Biology.

[18]  Tsung-Cheng Chang,et al.  Widespread microRNA repression by Myc contributes to tumorigenesis , 2008, Nature Genetics.

[19]  T. Ichisaka,et al.  Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors , 2007, Cell.

[20]  R. Eisenman,et al.  Myc stimulates B lymphocyte differentiation and amplifies calcium signaling , 2007, The Journal of cell biology.

[21]  Hitoshi Niwa,et al.  Open conformation chromatin and pluripotency. , 2007, Genes & development.

[22]  Z. Paroush,et al.  A Myc–Groucho complex integrates EGF and Notch signaling to regulate neural development , 2007, Proceedings of the National Academy of Sciences.

[23]  P. Cole,et al.  TRRAP and GCN5 are used by c-Myc to activate RNA polymerase III transcription , 2007, Proceedings of the National Academy of Sciences.

[24]  C. Thompson,et al.  HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. , 2007, Cancer cell.

[25]  S. Oliviero,et al.  PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation , 2007, Nature Cell Biology.

[26]  W. Gu,et al.  Non-transcriptional control of DNA replication by c-Myc , 2007, Nature.

[27]  Aleksandar Dakic,et al.  Tumor Growth Need Not Be Driven by Rare Cancer Stem Cells , 2007, Science.

[28]  T. Ichisaka,et al.  Generation of germline-competent induced pluripotent stem cells , 2007, Nature.

[29]  R. Jaenisch,et al.  In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state , 2007, Nature.

[30]  S. Elledge,et al.  The ubiquitin-specific protease USP28 is required for MYC stability , 2007, Nature Cell Biology.

[31]  G. Semenza,et al.  HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. , 2007, Cancer cell.

[32]  Michael D. Cole,et al.  c-Myc Transforms Human Mammary Epithelial Cells through Repression of the Wnt Inhibitors DKK1 and SFRP1 , 2007, Molecular and Cellular Biology.

[33]  John D Gordan,et al.  HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. , 2007, Cancer cell.

[34]  Julie A. Wilkins,et al.  Myc deletion rescues Apc deficiency in the small intestine , 2007, Nature.

[35]  M. Cole,et al.  The Myc Transactivation Domain Promotes Global Phosphorylation of the RNA Polymerase II Carboxy-Terminal Domain Independently of Direct DNA Binding , 2007, Molecular and Cellular Biology.

[36]  S. Henikoff,et al.  Histone Replacement Marks the Boundaries of cis-Regulatory Domains , 2007, Science.

[37]  R. Eisenman,et al.  The Trithorax group protein Lid is a trimethyl histone H3K4 demethylase required for dMyc-induced cell growth. , 2007, Genes & development.

[38]  Zhiping Weng,et al.  Global mapping of c-Myc binding sites and target gene networks in human B cells , 2006, Proceedings of the National Academy of Sciences.

[39]  E. Passegué,et al.  Sustained regression of tumors upon MYC inactivation requires p53 or thrombospondin-1 to reverse the angiogenic switch , 2006, Proceedings of the National Academy of Sciences.

[40]  A. Trumpp,et al.  Skin epidermis lacking the c-Myc gene is resistant to Ras-driven tumorigenesis but can reacquire sensitivity upon additional loss of the p21Cip1 gene. , 2006, Genes & development.

[41]  F. Zindy,et al.  N-Myc and the cyclin-dependent kinase inhibitors p18Ink4c and p27Kip1 coordinately regulate cerebellar development. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Giacomo Finocchiaro,et al.  Myc-binding-site recognition in the human genome is determined by chromatin context , 2006, Nature Cell Biology.

[43]  Philip R. Gafken,et al.  Myc influences global chromatin structure , 2006, The EMBO journal.

[44]  C. Glass,et al.  Mnt-deficient mammary glands exhibit impaired involution and tumors with characteristics of myc overexpression. , 2006, Cancer research.

[45]  G. Evan,et al.  Reversible kinetic analysis of Myc targets in vivo provides novel insights into Myc-mediated tumorigenesis. , 2006, Cancer research.

[46]  K. Mechtler,et al.  Asymmetric Segregation of the Tumor Suppressor Brat Regulates Self-Renewal in Drosophila Neural Stem Cells , 2006, Cell.

[47]  Sandya Liyanarachchi,et al.  Combinatorial analysis of transcription factor partners reveals recruitment of c-MYC to estrogen receptor-alpha responsive promoters. , 2006, Molecular cell.

[48]  P. Hurlin,et al.  Of Myc and Mnt , 2006, Journal of Cell Science.

[49]  F. Watt,et al.  Myc regulates keratinocyte adhesion and differentiation via complex formation with Miz1 , 2006, The Journal of cell biology.

[50]  M. Eilers,et al.  Mechanisms of transcriptional repression by Myc. , 2006, Current topics in microbiology and immunology.

[51]  C. Tudge The Tree , 2006 .

[52]  M. Cole,et al.  Transcriptional activation by the Myc oncoprotein. , 2006, Current topics in microbiology and immunology.

[53]  B. Lüscher,et al.  The Mad side of the Max network: antagonizing the function of Myc and more. , 2006, Current topics in microbiology and immunology.

[54]  T. Misteli,et al.  Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. , 2006, Developmental cell.

[55]  M. Henriksson,et al.  Mnt transcriptional repressor is functionally regulated during cell cycle progression , 2005, Oncogene.

[56]  K. Helin,et al.  The Ubiquitin Ligase HectH9 Regulates Transcriptional Activation by Myc and Is Essential for Tumor Cell Proliferation , 2005, Cell.

[57]  P. Boukamp Non-melanoma skin cancer: what drives tumor development and progression? , 2005, Carcinogenesis.

[58]  Antonio Porro,et al.  In vivo transcriptional regulation of N-Myc target genes is controlled by E-box methylation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[59]  M. Blasco,et al.  Effects of Telomerase and Telomere Length on Epidermal Stem Cell Behavior , 2005, Science.

[60]  S. Lowe,et al.  Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants , 2005, Nature.

[61]  M. Eilers,et al.  Transcriptional regulation and transformation by Myc proteins , 2005, Nature Reviews Molecular Cell Biology.

[62]  Kathryn A. O’Donnell,et al.  Myc Stimulates Nuclearly Encoded Mitochondrial Genes and Mitochondrial Biogenesis , 2005, Molecular and Cellular Biology.

[63]  Kathryn A. O’Donnell,et al.  c-Myc-regulated microRNAs modulate E2F1 expression , 2005, Nature.

[64]  S. Lowe,et al.  A microRNA polycistron as a potential human oncogene , 2005, Nature.

[65]  A. Wynshaw-Boris,et al.  Mnt–Max to Myc–Max complex switching regulates cell cycle entry , 2005, The Journal of cell biology.

[66]  A. Barbour,et al.  Whole-Genome Analysis Reveals a Strong Positional Bias of Conserved dMyc-Dependent E-Boxes , 2005, Molecular and Cellular Biology.

[67]  B. Hogan,et al.  Nmyc plays an essential role during lung development as a dosage-sensitive regulator of progenitor cell proliferation and differentiation , 2005, Development.

[68]  S. Dalton,et al.  LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism , 2005, Development.

[69]  Lars-Gunnar Larsson,et al.  c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription , 2005, Nature Cell Biology.

[70]  B. Edgar,et al.  Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development , 2005, Nature Cell Biology.

[71]  Carla Grandori,et al.  c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I , 2005, Nature Cell Biology.

[72]  U. Weidle,et al.  Dissection of transcriptional programmes in response to serum and c-Myc in a human B-cell line , 2005, Oncogene.

[73]  B. Edgar,et al.  Genomic binding and transcriptional regulation by the Drosophila Myc and Mnt transcription factors. , 2005, Cold Spring Harbor symposia on quantitative biology.

[74]  William Arbuthnot Sir Lane,et al.  The c-MYC Oncoprotein Is a Substrate of the Acetyltransferases hGCN5/PCAF and TIP60 , 2004, Molecular and Cellular Biology.

[75]  Mark J. Murphy,et al.  c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. , 2004, Genes & development.

[76]  Christopher H. Contag,et al.  MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer , 2004, Nature.

[77]  B. Clurman,et al.  A Nucleolar Isoform of the Fbw7 Ubiquitin Ligase Regulates c-Myc and Cell Size , 2004, Current Biology.

[78]  Tom Misteli,et al.  Global Nature of Dynamic Protein-Chromatin Interactions In Vivo: Three-Dimensional Genome Scanning and Dynamic Interaction Networks of Chromatin Proteins , 2004, Molecular and Cellular Biology.

[79]  S. McMahon,et al.  Analysis of genomic targets reveals complex functions of MYC , 2004, Nature Reviews Cancer.

[80]  K. Nakayama,et al.  Phosphorylation‐dependent degradation of c‐Myc is mediated by the F‐box protein Fbw7 , 2004, The EMBO journal.

[81]  B. Clurman,et al.  The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[82]  A. Grinberg,et al.  Visualization of Myc/Max/Mad Family Dimers and the Competition for Dimerization in Living Cells , 2004, Molecular and Cellular Biology.

[83]  J. S. Britton,et al.  dMyc is required for larval growth and endoreplication in Drosophila , 2004, Development.

[84]  Joseph R. Nevins,et al.  A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells , 2004, Nature Cell Biology.

[85]  C. Glass,et al.  A Corepressor/Coactivator Exchange Complex Required for Transcriptional Activation by Nuclear Receptors and Other Regulated Transcription Factors , 2004, Cell.

[86]  J. Cleveland,et al.  Mnt Loss Triggers Myc Transcription Targets, Proliferation, Apoptosis, and Transformation , 2004, Molecular and Cellular Biology.

[87]  D. Rowitch,et al.  Hedgehog and PI-3 kinase signaling converge on Nmyc1 to promote cell cycle progression in cerebellar neuronal precursors , 2004, Development.

[88]  A. Wynshaw-Boris,et al.  Deletion of Mnt leads to disrupted cell cycle control and tumorigenesis , 2003, The EMBO journal.

[89]  F. Watt,et al.  Evidence that Myc activation depletes the epidermal stem cell compartment by modulating adhesive interactions with the local microenvironment , 2003, Development.

[90]  Michael Q. Zhang,et al.  A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[91]  Peggy J. Farnham,et al.  Analysis of Myc Bound Loci Identified by CpG Island Arrays Shows that Max Is Essential for Myc-Dependent Repression , 2003, Current Biology.

[92]  Andrea Cocito,et al.  Genomic targets of the human c-Myc protein. , 2003, Genes & development.

[93]  B. Edgar,et al.  Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. , 2003, Genes & development.

[94]  B. Lüscher,et al.  Stimulation of c‐MYC transcriptional activity and acetylation by recruitment of the cofactor CBP , 2003, EMBO reports.

[95]  S. Kim,et al.  Skp2 regulates Myc protein stability and activity. , 2003, Molecular cell.

[96]  K. Nakayama,et al.  The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. , 2003, Molecular cell.

[97]  Einar Hallberg,et al.  Accumulation of c-Myc and proteasomes at the nucleoli of cells containing elevated c-Myc protein levels , 2003, Journal of Cell Science.

[98]  John M Sedivy,et al.  A Large Scale Genetic Analysis of c-Myc-regulated Gene Expression Patterns* 210 , 2003, The Journal of Biological Chemistry.

[99]  D. Felsher,et al.  Genomically complex lymphomas undergo sustained tumor regression upon MYC inactivation unless they acquire novel chromosomal translocations. , 2003, Blood.

[100]  R. Eisenman,et al.  Direct activation of RNA polymerase III transcription by c-Myc , 2003, Nature.

[101]  Fionnuala Morrish,et al.  c-MYC apoptotic function is mediated by NRF-1 target genes. , 2003, Genes & development.

[102]  Holger Christiansen,et al.  Loss of a FYN-regulated differentiation and growth arrest pathway in advanced stage neuroblastoma. , 2002, Cancer cell.

[103]  P. Farnham,et al.  Myc Recruits P-TEFb to Mediate the Final Step in the Transcriptional Activation of the cad Promoter* , 2002, The Journal of Biological Chemistry.

[104]  J. Massagué,et al.  Myc suppression of the p21Cip1 Cdk inhibitor influences the outcome of the p53 response to DNA damage , 2002, Nature.

[105]  R. Eisenman,et al.  N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. , 2002, Genes & development.

[106]  Ruedi Aebersold,et al.  Quantitative proteomic analysis of Myc oncoprotein function , 2002, The EMBO journal.

[107]  Carla Grandori,et al.  Modulation of T‐lymphocyte development, growth and cell size by the Myc antagonist and transcriptional repressor Mad1 , 2002, The EMBO journal.

[108]  M. Eilers,et al.  Negative regulation of the mammalian UV response by Myc through association with Miz-1. , 2002, Molecular cell.

[109]  M. Cole,et al.  The Proto-oncogene c-myc Acts through the Cyclin-dependent Kinase (Cdk) Inhibitor p27Kip1to Facilitate the Activation of Cdk4/6 and Early G1Phase Progression* , 2002, The Journal of Biological Chemistry.

[110]  R. Eisenman,et al.  Myc and Mad bHLHZ domains possess identical DNA-binding specificities but only partially overlapping functions in vivo , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[111]  Christopher K. Glass,et al.  Exchange of N-CoR Corepressor and Tip60 Coactivator Complexes Links Gene Expression by NF-κB and β-Amyloid Precursor Protein , 2002, Cell.

[112]  James M. Roberts,et al.  MAD1 and p27KIP1 Cooperate To Promote Terminal Differentiation of Granulocytes and To Inhibit Myc Expression and Cyclin E-CDK2 Activity , 2002, Molecular and Cellular Biology.

[113]  D. Roop,et al.  Deregulated expression of c-Myc depletes epidermal stem cells , 2001, Nature Genetics.

[114]  Fiona M Watt,et al.  c-Myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny , 2001, Current Biology.

[115]  L. Penn,et al.  Mechanism for the transcriptional repression by c-Myc on PDGF (β)-receptor , 2001 .

[116]  J. Massagué,et al.  TGFβ influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b , 2001, Nature Cell Biology.

[117]  J. Massagué,et al.  Repression of p15INK4b expression by Myc through association with Miz-1 , 2001, Nature Cell Biology.

[118]  A. Gartel,et al.  Myc represses the p21(WAF1/CIP1) promoter and interacts with Sp1/Sp3 , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[119]  W. Ansorge,et al.  Induction of cyclin E–cdk2 kinase activity, E2F‐dependent transcription and cell growth by Myc are genetically separable events , 2000, The EMBO journal.

[120]  A. Puig-Kröger,et al.  c‐Myc inhibits CD11a and CD11c leukocyte integrin promoters , 2000, European journal of immunology.

[121]  D. Scadden,et al.  Hematopoietic stem cell quiescence maintained by p21cip1/waf1. , 2000, Science.

[122]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[123]  R. DePinho,et al.  Essential role for Max in early embryonic growth and development. , 2000, Genes & development.

[124]  R. Eisenman,et al.  The Myc/Max/Mad network and the transcriptional control of cell behavior. , 2000, Annual review of cell and developmental biology.

[125]  R. Eisenman,et al.  c-Myc enhances protein synthesis and cell size during B lymphocyte development. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[126]  P. Farnham,et al.  c-Myc target gene specificity is determined by a post-DNAbinding mechanism. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[127]  F M Watt,et al.  c-Myc promotes differentiation of human epidermal stem cells. , 1997, Genes & development.

[128]  J. Sedivy,et al.  Phenotypes of c-Myc-deficient rat fibroblasts isolated by targeted homologous recombination. , 1997, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research.

[129]  R A Jungmann,et al.  c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[130]  R. Eisenman,et al.  Myc‐Max heterodimers activate a DEAD box gene and interact with multiple E box‐related sites in vivo. , 1996, The EMBO journal.

[131]  A. Elefanty,et al.  Progenitor tumours from Emu‐bcl‐2‐myc transgenic mice have lymphomyeloid differentiation potential and reveal developmental differences in cell survival. , 1996, The EMBO journal.

[132]  E. Ziff,et al.  The nerve growth factor-responsive PC12 cell line does not express the Myc dimerization partner Max , 1995, Molecular and cellular biology.

[133]  A Ma,et al.  Binding of myc proteins to canonical and noncanonical DNA sequences , 1993, Molecular and cellular biology.

[134]  J. Moore,et al.  c-myc protein expression in untransformed fibroblasts. , 1991, Oncogene.

[135]  D. Scadden,et al.  Hematopoietic Stem Cell Quiescence Maintained by p 21 cip 1 / waf 1 , 2022 .