Ares I-X Trajectory Reconstruction: Methodology and Results

The Ares I-X trajectory reconstruction produced best-estimated trajectories of the flight-test vehicle ascent through stage separation and of the first- and upper-stage entries after separation. The trajectory-reconstruction process combines onboard, ground-based, and atmospheric measurements to produce the trajectory estimates, using an iterated extended Kalman filter algorithm. The Ares I-X vehicle had a number of onboard and ground-based sensors that were available, including inertial measurement units, radar, air data, and weather balloons. However, due to problems with calibrations and/or data, not all of the sensor data were used. This paper describes the methodology and results of the trajectory-reconstruction process, including flight-data preprocessing and input uncertainties, trajectory-estimation algorithms and dynamic models, output transformations, and comparisons with preflight predictions. The results of the reconstruction indicate nominal vehicle performance that is well within the range o...

[1]  D. Vallado Fundamentals of Astrodynamics and Applications , 1997 .

[2]  Christopher A. Kuhl,et al.  Mars Science Laboratory Entry Atmospheric Data System Trajectory and Atmosphere Reconstruction , 2014 .

[3]  W. E. Wagner,et al.  Formulation on statistical trajectory estimation programs , 1970 .

[4]  J. T. Findlay,et al.  Shuttle entry trajectory reconstruction using inflight accelerometer and gyro measurements , 1979 .

[5]  Jay Brandon,et al.  Time Domain Tool Validation Using ARES I-X Flight Data , 2011 .

[6]  Marc L. Sabin Linear Filtering of Ballistic-Entry Probe Data for Atmospheric Reconstruction , 1975 .

[7]  W. E. Wagner,et al.  Re-entry filtering, prediction, and smoothing. , 1966 .

[8]  Christopher D. Karlgaard,et al.  Assessment of the Reconstructed Aerodynamics of the Mars Science Laboratory Entry Vehicle , 2014 .

[9]  J. Junkins,et al.  Optimal Estimation of Dynamic Systems , 2004 .

[10]  J. T. Findlay,et al.  Shuttle /STS-1/ entry trajectory reconstruction , 1981 .

[11]  Niels Kjølstad Poulsen,et al.  New developments in state estimation for nonlinear systems , 2000, Autom..

[12]  H. Garcia An analysis of recent advances in autonomous navigation for near earth applications , 1973 .

[13]  Jay M. Brandon,et al.  Calibration and Flight Results for the Ares I-X 5-Hole Probe , 2011 .

[14]  I. Sofair,et al.  Improved Method for Calculating Exact Geodetic Latitude and Altitude Revisited , 2000 .

[15]  Christopher D. Karlgaard,et al.  Hyper{X Post{Flight Trajectory Reconstruction , 2006 .

[16]  D. Fraser,et al.  The optimum linear smoother as a combination of two optimum linear filters , 1969 .

[17]  G. L. Adams E.A. Euler,et al.  Design and Reconstruction of the Viking Lander Descent Trajectories , 1978 .

[18]  Gerard Petit,et al.  IERS Conventions (2003) , 2004 .

[19]  David M. Bose,et al.  IRVE-II Post-Flight Trajectory Reconstruction , 2010 .

[20]  W. E. Shields Statistical Trajectory Estimation Program (STEP) implementation for BLDT post flight trajectory simulation , 1973 .

[21]  Stephan R. Davis,et al.  Ares I-X: First Flight of a New Generation , 2010 .

[22]  PrabhakaraP . Rao Titan IIIC preflight and postflight trajectory analyses , 1984 .

[23]  Robert D. Braun,et al.  Uncertainty Quantification for Mars Entry, Descent, and Landing Reconstruction Using Adaptive Filtering , 2013 .

[24]  Young Kim,et al.  CLVTOPS Liftoff and Separation Analysis Validation Using Ares I-X Flight Data , 2011 .