From structure to function of bacterial chromosomes: Evolutionary perspectives and ideas for new experiments

The link between chromosome structure and function is a challenging open question because chromosomes in vivo are highly dynamic and arduous to manipulate. Here, we examine several promising approaches to tackle this question specifically in bacteria, by integrating knowledge from different sources. Toward this end, we first provide a brief overview of experimental tools that have provided insights into the description of the bacterial chromosome, including genetic, biochemical and fluorescence microscopy techniques. We then explore the possibility of using comparative genomics to isolate functionally important features of chromosome organization, exploiting the fact that features shared between phylogenetically distant bacterial species reflect functional significance. Finally, we discuss possible future perspectives from the field of experimental evolution. Specifically, we propose novel experiments in which bacteria could be screened and selected on the basis of the structural properties of their chromosomes.

[1]  R. Lenski,et al.  Long-Term Experimental Evolution in Escherichia coli. XII. DNA Topology as a Key Target of Selection , 2005, Genetics.

[2]  Ying Xu,et al.  Computational analyses of transcriptomic data reveal the dynamic organization of the Escherichia coli chromosome under different conditions , 2013, Nucleic acids research.

[3]  W. D. Laat,et al.  A Decade of 3c Technologies: Insights into Nuclear Organization References , 2022 .

[4]  Marc A Marti-Renom,et al.  The Three-dimensional Architecture of a Bacterial Genome and Its Alteration by Genetic Perturbation , 2022 .

[5]  K. Skarstad,et al.  Replication fork movement and methylation govern SeqA binding to the Escherichia coli chromosome , 2012, Nucleic acids research.

[6]  Leonor Saiz,et al.  Inferring the in vivo looping properties of DNA. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[7]  M Frank-Kamenetskii,et al.  Conformational and thermodynamic properties of supercoiled DNA. , 1992, Journal of molecular biology.

[8]  Reid C. Johnson,et al.  Variation of the folding and dynamics of the Escherichia coli chromosome with growth conditions , 2012, Molecular microbiology.

[9]  J. Meile,et al.  FtsK actively segregates sister chromosomes in Escherichia coli , 2013, Proceedings of the National Academy of Sciences.

[10]  Romain Koszul,et al.  Metagenomic chromosome conformation capture (meta3C) unveils the diversity of chromosome organization in microorganisms , 2014, eLife.

[11]  Eugene V Koonin,et al.  Connected gene neighborhoods in prokaryotic genomes. , 2002, Nucleic acids research.

[12]  S. Gruber Multilayer chromosome organization through DNA bending, bridging and extrusion. , 2014, Current opinion in microbiology.

[13]  D. Rudner,et al.  Recruitment of SMC by ParB-parS Organizes the Origin Region and Promotes Efficient Chromosome Segregation , 2009, Cell.

[14]  J. Errington,et al.  Dynamic Control of the DNA Replication Initiation Protein DnaA by Soj/ParA , 2008, Cell.

[15]  Atsushi Miyawaki,et al.  Development of probes for cellular functions using fluorescent proteins and fluorescence resonance energy transfer. , 2011, Annual review of biochemistry.

[16]  Marcel Geertz,et al.  Homeostatic regulation of supercoiling sensitivity coordinates transcription of the bacterial genome , 2006, EMBO reports.

[17]  J. Sedat,et al.  Spatial partitioning of the regulatory landscape of the X-inactivation centre , 2012, Nature.

[18]  J. Doudna,et al.  The new frontier of genome engineering with CRISPR-Cas9 , 2014, Science.

[19]  Ivan Junier,et al.  Polymer modeling of the E. coli genome reveals the involvement of locus positioning and macrodomain structuring for the control of chromosome conformation and segregation , 2013, Nucleic acids research.

[20]  V. Jooste,et al.  The HU Regulon Is Composed of Genes Responding to Anaerobiosis, Acid Stress, High Osmolarity and SOS Induction , 2009, PloS one.

[21]  M. Rossignol,et al.  Macrodomain organization of the Escherichia coli chromosome , 2004, The EMBO journal.

[22]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[23]  E. Dimitriadis,et al.  Galactose repressor mediated intersegmental chromosomal connections in Escherichia coli , 2012, Proceedings of the National Academy of Sciences.

[24]  Thomas A. Hopf,et al.  Protein structure prediction from sequence variation , 2012, Nature Biotechnology.

[25]  Antoine Danchin,et al.  Persistence drives gene clustering in bacterial genomes , 2008, BMC Genomics.

[26]  Stéphane Robin,et al.  The MatP/matS Site-Specific System Organizes the Terminus Region of the E. coli Chromosome into a Macrodomain , 2008, Cell.

[27]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[28]  Christopher A. Voigt,et al.  Prokaryotic gene clusters: A rich toolbox for synthetic biology , 2010, Biotechnology journal.

[29]  Ingrid Remy,et al.  Detection of protein–protein interactions using a simple survival protein-fragment complementation assay based on the enzyme dihydrofolate reductase , 2007, Nature Protocols.

[30]  R. S. Grand,et al.  Genome conformation capture reveals that the Escherichia coli chromosome is organized by replication and transcription , 2013, Nucleic acids research.

[31]  Saeed Tavazoie,et al.  Protein occupancy landscape of a bacterial genome. , 2009, Molecular cell.

[32]  Shane C. Dillon,et al.  Bacterial nucleoid-associated proteins, nucleoid structure and gene expression , 2010, Nature Reviews Microbiology.

[33]  H. Delius,et al.  Electron microscopic visualization of the folded chromosome of Escherichia coli , 1974 .

[34]  Arkady B Khodursky,et al.  Spatial patterns of transcriptional activity in the chromosome of Escherichia coli , 2004, Genome Biology.

[35]  A. Podtelezhnikov,et al.  Large-scale effects of transcriptional DNA supercoiling in vivo. , 1999, Journal of molecular biology.

[36]  Ivan Junier,et al.  Conserved patterns in bacterial genomes: A conundrum physically tailored by evolutionary tinkering , 2014, Comput. Biol. Chem..

[37]  Bianca Sclavi,et al.  Gene silencing and large-scale domain structure of the E. coli genome. , 2012, Molecular bioSystems.

[38]  Michael Y. Galperin,et al.  The COG database: a tool for genome-scale analysis of protein functions and evolution , 2000, Nucleic Acids Res..

[39]  A. Abate,et al.  Ultrahigh-throughput screening in drop-based microfluidics for directed evolution , 2010, Proceedings of the National Academy of Sciences.

[40]  Peter F. Hallin,et al.  Parallel genetic and phenotypic evolution of DNA superhelicity in experimental populations of Escherichia coli. , 2010, Molecular biology and evolution.

[41]  Kevin D Dorfman,et al.  Physical descriptions of the bacterial nucleoid at large scales, and their biological implications , 2012, Reports on progress in physics. Physical Society.

[42]  P Bork,et al.  Gene context conservation of a higher order than operons. , 2000, Trends in biochemical sciences.

[43]  Jeffrey E. Barrick,et al.  Genome evolution and adaptation in a long-term experiment with Escherichia coli , 2009, Nature.

[44]  H. Niki,et al.  Dynamic organization of chromosomal DNA in Escherichia coli. , 2000, Genes & development.

[45]  Jeffrey R Moffitt,et al.  Characterization and development of photoactivatable fluorescent proteins for single-molecule–based superresolution imaging , 2014, Proceedings of the National Academy of Sciences.

[46]  X. Zhuang,et al.  Breaking the Diffraction Barrier: Super-Resolution Imaging of Cells , 2010, Cell.

[47]  B. Müller-Hill,et al.  Repression of lac promoter as a function of distance, phase and quality of an auxiliary lac operator. , 1996, Journal of molecular biology.

[48]  H V Westerhoff,et al.  Structure and partitioning of bacterial DNA: determined by a balance of compaction and expansion forces? , 1995, FEMS microbiology letters.

[49]  S. Michnick,et al.  Clonal selection and in vivo quantitation of protein interactions with protein-fragment complementation assays. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[50]  L. Shapiro,et al.  Bacterial chromosome organization and segregation. , 2010, Cold Spring Harbor perspectives in biology.

[51]  J. Roth,et al.  Surveying a supercoil domain by using the gamma delta resolution system in Salmonella typhimurium , 1996, Journal of bacteriology.

[52]  F. Hansen,et al.  Progressive segregation of the Escherichia coli chromosome , 2006, Molecular microbiology.

[53]  A. Tanay,et al.  Three-Dimensional Folding and Functional Organization Principles of the Drosophila Genome , 2012, Cell.

[54]  Cherisse R. Loucks,et al.  Chromosome Organization by a Nucleoid-Associated Protein in Live Bacteria , 2011, Science.

[55]  D. Sherratt,et al.  Chromosome replication and segregation in bacteria. , 2012, Annual review of genetics.

[56]  Remy Chait,et al.  Evolutionary paths to antibiotic resistance under dynamically sustained drug selection , 2011, Nature Genetics.

[57]  G. Jagura-Burdzy,et al.  Bacterial chromosome segregation , 2005 .

[58]  D. Rudner,et al.  Bacillus subtilis chromosome organization oscillates between two distinct patterns , 2014, Proceedings of the National Academy of Sciences.

[59]  L. Bossi,et al.  Activation and silencing of leu‐500 promoter by transcription‐induced DNA supercoiling in the Salmonella chromosome , 2000, Molecular microbiology.

[60]  Andrew Travers,et al.  DNA supercoiling — a global transcriptional regulator for enterobacterial growth? , 2005, Nature Reviews Microbiology.

[61]  David J Sherratt,et al.  Bacterial Chromosome Dynamics , 2003, Science.

[62]  Paul A. Wiggins,et al.  Strong intranucleoid interactions organize the Escherichia coli chromosome into a nucleoid filament , 2010, Proceedings of the National Academy of Sciences.

[63]  Michael T Laub,et al.  New approaches to understanding the spatial organization of bacterial genomes. , 2014, Current opinion in microbiology.

[64]  A. Worcel,et al.  On the structure of the folded chromosome of Escherichia coli. , 1972, Journal of molecular biology.

[65]  Mark Ptashne,et al.  Gene regulation by proteins acting nearby and at a distance , 1986, Nature.

[66]  J. Townsend,et al.  Horizontal gene transfer, genome innovation and evolution , 2005, Nature Reviews Microbiology.

[67]  C. D. Hardy,et al.  Topological domain structure of the Escherichia coli chromosome. , 2004, Genes & development.

[68]  D. Lilley,et al.  Local DNA topology and gene expression: the case of the leu-500 promoter. , 1991, Molecular microbiology.

[69]  Antoine M. van Oijen,et al.  ParB spreading requires DNA bridging , 2014, Genes & development.

[70]  J. Errington,et al.  Recruitment of Condensin to Replication Origin Regions by ParB/SpoOJ Promotes Chromosome Segregation in B. subtilis , 2009, Cell.

[71]  O. Espéli,et al.  A MatP–divisome interaction coordinates chromosome segregation with cell division in E. coli , 2012, The EMBO journal.

[72]  N. Kleckner,et al.  The bacterial nucleoid: nature, dynamics and sister segregation. , 2014, Current opinion in microbiology.

[73]  E. Koonin,et al.  Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world , 2008, Nucleic acids research.

[74]  N. Cozzarelli,et al.  Processive recombination by the phage Mu Gin system: Implications for the mechanisms of DNA strand exchange, DNA site alignment, and enhancer action , 1990, Cell.

[75]  L. Mirny,et al.  High-Resolution Mapping of the Spatial Organization of a Bacterial Chromosome , 2013, Science.

[76]  A. Murray,et al.  Chromosome and Low Copy Plasmid Segregation in E. coli: Visual Evidence for Distinct Mechanisms , 1997, Cell.

[77]  Javier Tamames,et al.  Evolution of gene order conservation in prokaryotes , 2001, Genome Biology.

[78]  Naotake Ogasawara,et al.  Escherichia coli histone-like protein H-NS preferentially binds to horizontally acquired DNA in association with RNA polymerase. , 2006, DNA research : an international journal for rapid publication of reports on genes and genomes.

[79]  R. Lenski,et al.  Long-term experimental evolution in Escherichia coli , 1991 .

[80]  D. Dunlap,et al.  Dividing a supercoiled DNA molecule into two independent topological domains , 2011, Proceedings of the National Academy of Sciences.

[81]  H. McAdams,et al.  Caulobacter chromosome in vivo configuration matches model predictions for a supercoiled polymer in a cell-like confinement , 2013, Proceedings of the National Academy of Sciences.

[82]  R. Wells,et al.  Direct evidence for the effect of transcription on local DNA supercoiling in vivo. , 1992, Journal of molecular biology.

[83]  D. Sherratt,et al.  The two Escherichia coli chromosome arms locate to separate cell halves. , 2006, Genes & development.

[84]  S. Jonjić,et al.  Modulation of natural killer cell activity by viruses. , 2010, Current opinion in microbiology.

[85]  N. Cozzarelli,et al.  Recombination site selection by Tn3 resolvase: Topological tests of a tracking mechanism , 1985, Cell.

[86]  Ivan Junier,et al.  Genomic organization of evolutionarily correlated genes in bacteria: limits and strategies. , 2012, Journal of molecular biology.

[87]  N. Higgins,et al.  RNA polymerase: chromosome domain boundary maker and regulator of supercoil density. , 2014, Current opinion in microbiology.

[88]  Nancy Kleckner,et al.  Four-Dimensional Imaging of E. coli Nucleoid Organization and Dynamics in Living Cells , 2013, Cell.

[89]  R. Schleif,et al.  DNA looping. , 1988, Science.

[90]  N. Kleckner,et al.  Escherichia coli sister chromosome separation includes an abrupt global transition with concomitant release of late-splitting intersister snaps , 2011, Proceedings of the National Academy of Sciences.

[91]  D. Eisenberg,et al.  Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[92]  Ying Xu,et al.  Genomic arrangement of bacterial operons is constrained by biological pathways encoded in the genome , 2010, Proceedings of the National Academy of Sciences.

[93]  Nicholas M. Luscombe,et al.  Genomic analysis of DNA binding and gene regulation by homologous nucleoid-associated proteins IHF and HU in Escherichia coli K12 , 2011, Nucleic acids research.

[94]  M. Nollmann,et al.  Single-molecule super-resolution imaging in bacteria. , 2012, Current opinion in microbiology.

[95]  P. Fraser,et al.  Nuclear organization of the genome and the potential for gene regulation , 2007, Nature.

[96]  D. Hartl,et al.  Accelerated evolution of resistance in multidrug environments , 2008, Proceedings of the National Academy of Sciences.

[97]  Nicholas M. Luscombe,et al.  Direct and indirect effects of H-NS and Fis on global gene expression control in Escherichia coli , 2010, Nucleic acids research.

[98]  L. Mureşan,et al.  Differential Management of the Replication Terminus Regions of the Two Vibrio cholerae Chromosomes during Cell Division , 2014, PLoS genetics.

[99]  J. Dekker,et al.  Capturing Chromosome Conformation , 2002, Science.

[100]  U. Endesfelder,et al.  Multiscale spatial organization of RNA polymerase in Escherichia coli. , 2013, Biophysical journal.

[101]  S. Jun,et al.  The multifork Escherichia coli chromosome is a self-duplicating and self-segregating thermodynamic ring polymer , 2014, Genes & development.

[102]  Jagannath Mondal,et al.  Time‐dependent effects of transcription‐ and translation‐halting drugs on the spatial distributions of the Escherichia coli chromosome and ribosomes , 2014, Molecular microbiology.

[103]  U. Endesfelder,et al.  Super-resolution imaging of Escherichia coli nucleoids reveals highly structured and asymmetric segregation during fast growth. , 2014, Journal of structural biology.

[104]  L. Moulin,et al.  Topological insulators inhibit diffusion of transcription‐induced positive supercoils in the chromosome of Escherichia coli , 2004, Molecular microbiology.

[105]  G. Church,et al.  Cas9 as a versatile tool for engineering biology , 2013, Nature Methods.

[106]  R. P. Saha,et al.  Transposable Prophage Mu Is Organized as a Stable Chromosomal Domain of E. coli , 2013, PLoS genetics.

[107]  L. Shapiro,et al.  The structure and function of the bacterial chromosome. , 2005, Current opinion in genetics & development.

[108]  O. Espéli,et al.  DNA dynamics vary according to macrodomain topography in the E. coli chromosome , 2008, Molecular microbiology.

[109]  Albert Siryaporn,et al.  Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells , 2012, Molecular microbiology.

[110]  Benno Müller-Hill,et al.  Repression oflacPromoter as a Function of Distance, Phase and Quality of an AuxiliarylacOperator , 1996 .

[111]  Wesley P. Wong,et al.  Physical manipulation of the Escherichia coli chromosome reveals its soft nature , 2012, Proceedings of the National Academy of Sciences.

[112]  A. Grossman,et al.  Whole‐genome analysis of the chromosome partitioning and sporulation protein Spo0J (ParB) reveals spreading and origin‐distal sites on the Bacillus subtilis chromosome , 2007, Molecular microbiology.

[113]  A. Travers,et al.  Coordination of genomic structure and transcription by the main bacterial nucleoid‐associated protein HU , 2010, EMBO reports.

[114]  S. Zimmerman,et al.  Shape and compaction of Escherichia coli nucleoids. , 2006, Journal of structural biology.

[115]  Andrew Travers,et al.  Gene order and chromosome dynamics coordinate spatiotemporal gene expression during the bacterial growth cycle , 2011, Proceedings of the National Academy of Sciences.

[116]  S. Busby,et al.  Association of nucleoid proteins with coding and non-coding segments of the Escherichia coli genome , 2006, Nucleic acids research.

[117]  Marc A. Martí-Renom,et al.  The Three-Dimensional Architecture of a Bacterial Genome and Its Alteration by Genetic Perturbation , 2012, RECOMB.

[118]  M. Schumacher,et al.  Molecular basis for a protein-mediated DNA-bridging mechanism that functions in condensation of the E. coli chromosome. , 2012, Molecular cell.

[119]  O. Rivoire,et al.  Conserved units of co-expression in bacterial genomes: an evolutionary insight into gene regulation , 2014, bioRxiv.

[120]  Michael A Thompson,et al.  Super-resolution imaging of the nucleoid-associated protein HU in Caulobacter crescentus. , 2011, Biophysical journal.

[121]  Patrick T. McGrath,et al.  Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[122]  Charles J. Dorman,et al.  Genome architecture and global gene regulation in bacteria: making progress towards a unified model? , 2013, Nature Reviews Microbiology.

[123]  William J. Godinez,et al.  Chromosome segregation by the Escherichia coli Min system , 2013, Molecular systems biology.

[124]  N. Cozzarelli,et al.  Use of site-specific recombination as a probe of DNA structure and metabolism in vivo. , 1987, Journal of molecular biology.

[125]  C. Dorman H-NS, the genome sentinel , 2007, Nature Reviews Microbiology.

[126]  N. Cozzarelli,et al.  Linear ordering and dynamic segregation of the bacterial chromosome. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[127]  E. Rocha The organization of the bacterial genome. , 2008, Annual review of genetics.