Convergence of a semiclassical wavepacket based time-splitting for the Schrödinger equation

We propose a new algorithm for solving the semiclassical time-dependent Schrödinger equation. The algorithm is based on semiclassical wavepackets. The focus of the analysis is only on the time discretization: convergence is proved to be quadratic in the time step and linear in the semiclassical parameter $$\varepsilon $$ε.

[1]  N. Sathyamurthy,et al.  Time-dependent quantum mechanical approach to reactive scattering and related processes , 1997 .

[2]  P. Markowich,et al.  On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .

[3]  Shi Jin,et al.  Gaussian beam methods for the Schrodinger equation in the semi-classical regime: Lagrangian and Eulerian formulations , 2008 .

[4]  Arieh Iserles,et al.  Effective approximation for the linear time-dependent Schrödinger equation , 2012 .

[5]  Erwan Faou,et al.  Computing Semiclassical Quantum Dynamics with Hagedorn Wavepackets , 2009, SIAM J. Sci. Comput..

[6]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[7]  S. Adhikari,et al.  A quantum-classical approach to the molecular dynamics of pyrazine with a realistic model Hamiltonian. , 2006, The Journal of chemical physics.

[8]  M. Feit,et al.  Solution of the Schrödinger equation by a spectral method , 1982 .

[9]  Shi Jin,et al.  Semi-Eulerian and High Order Gaussian Beam Methods for the Schrodinger Equation in the Semiclassical Regime ∗ , 2011 .

[10]  E. Heller,et al.  Exact time‐dependent wave packet propagation: Application to the photodissociation of methyl iodide , 1982 .

[11]  R. Remmert,et al.  European Mathematical Society , 1994 .

[12]  Arieh Iserles,et al.  approximation for the linear time-dependent Schrodinger equation , 2012 .

[13]  S. Descombes,et al.  An exact local error representation of exponential operator splitting methods for evolutionary problems and applications to linear Schrödinger equations in the semi-classical regime , 2010 .

[14]  Charalambos Makridakis,et al.  Error control for time-splitting spectral approximations of the semiclassical Schrodinger equation , 2011 .

[15]  G. Hagedorn Raising and Lowering Operators for Semiclassical Wave Packets , 1998 .

[16]  C. Lubich From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis , 2008 .

[17]  Lexing Ying,et al.  Fast Gaussian wavepacket transforms and Gaussian beams for the Schrödinger equation , 2010, J. Comput. Phys..