Algorithms for media

Falmagne recently introduced the concept of a medium, a combinatorial object encompassing hyperplane arrangements, topological orderings, acyclic orientations, and many other familiar structures. We find efficient solutions for several algorithmic problems on media: finding short reset sequences, shortest paths, testing whether a medium has a closed orientation, and listing the states of a medium given a black-box description.

[1]  Edward F. Moore,et al.  Gedanken-Experiments on Sequential Machines , 1956 .

[2]  P. Orlik,et al.  Arrangements Of Hyperplanes , 1992 .

[3]  Eli Upfal,et al.  Are search and decision programs computationally equivalent? , 1985, STOC '85.

[4]  L. Dubuc,et al.  Sur Les Automates Circulaires et la Conjecture de Cerný , 1998, RAIRO Theor. Informatics Appl..

[5]  Sergei Ovchinnikov Media theory: Representations and examples , 2008, Discret. Appl. Math..

[6]  I. K. Rystsov,et al.  Reset Words for Commutative and Solvable Automata , 1997, Theor. Comput. Sci..

[7]  Seymour Ginsburg,et al.  On the Length of the Smallest Uniform Experiment which Distinguishes the Terminal States of a Machine , 1958, JACM.

[8]  David Eppstein Algorithms for Drawing Media , 2004, Graph Drawing.

[9]  Chak-Kuen Wong,et al.  Generating binary trees of bounded height , 1986, Acta Informatica.

[10]  B. Grofman,et al.  A stochastic model of preference change and its application to 1992 presidential election panel data , 1999 .

[11]  David Eppstein The lattice dimension of a graph , 2005, Eur. J. Comb..

[12]  Sergei Ovchinnikov,et al.  Media theory , 2002, Discret. Appl. Math..

[13]  Jean-Claude Falmagne,et al.  Knowledge spaces , 1998 .

[14]  Franz Aurenhammer,et al.  Recognizing binary Hamming graphs inO(n2 logn) time , 2005, Mathematical systems theory.

[15]  Robert E. Tarjan,et al.  A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas , 1979, Inf. Process. Lett..

[16]  Endre Szemerédi,et al.  On the Complexity of Matrix Group Problems I , 1984, FOCS.

[17]  Paul H. Edelman,et al.  The theory of convex geometries , 1985 .

[18]  Sergei Ovchinnikov,et al.  Hyperplane arrangements in preference modeling , 2005 .

[19]  Feodor F. Dragan,et al.  Center and diameter problems in plane triangulations and quadrangulations , 2002, SODA '02.

[20]  D. Djoković Distance-preserving subgraphs of hypercubes , 1973 .

[21]  Jirí Matousek The Number Of Unique-Sink Orientations of the Hypercube* , 2006, Comb..

[22]  Sergei Ovchinnikov,et al.  Advances in media theory , 2000 .

[23]  Falmagne Stochastic Token Theory , 1997, Journal of mathematical psychology.

[24]  David Avis,et al.  Reverse Search for Enumeration , 1996, Discret. Appl. Math..

[25]  David Eppstein,et al.  Reset Sequences for Monotonic Automata , 1990, SIAM J. Comput..

[26]  Eli Upfal,et al.  The complexity of parallel computation on matroids , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[27]  Jean-Claude Falmagne,et al.  Well-graded families of relations , 1997, Discret. Math..

[28]  Jayme Luiz Szwarcfiter,et al.  Generating all the Acyclic Orientations of an Undirected Graph , 1999, Inf. Process. Lett..

[29]  Balas K. Natarajan An algorithmic approach to the automated design of parts orienters , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).