Making big steps in trajectories

We consider the solution of initial value problems within the context of hybrid systems and emphasise use of high precision approximations (in software for exact real arithmetic). We propose a novel algorithm for the computation of trajectories up to the area where discontinuous jumps appear, applicable for holomorphic flow functions. Examples with a prototypical implementation illustrate that the algorithm might provide results with higher precision than well-known ODE solvers at a similar computation time.

[1]  Andrea Sorbi,et al.  New Computational Paradigms: Changing Conceptions of What is Computable , 2007 .

[2]  Abbas Edalat,et al.  A Domain Theoretic Account of Picard's Theorem , 2004, ICALP.

[3]  Pieter Collins Semantics and Computability of the Evolution of Hybrid Systems , 2011, SIAM J. Control. Optim..

[4]  I N Bronstein,et al.  Taschenbuch der Mathematik , 1966 .

[5]  Johannes Schumacher,et al.  An Introduction to Hybrid Dynamical Systems, Springer Lecture Notes in Control and Information Sciences 251 , 1999 .

[6]  Norbert Th. Müller,et al.  The iRRAM: Exact Arithmetic in C++ , 2000, CCA.

[7]  Klaus Weihrauch,et al.  A Tutorial on Computable Analysis , 2008 .

[8]  Jan Lunze,et al.  Handbook of Hybrid Systems Control: References , 2009 .

[9]  Jan Lunze,et al.  Handbook of hybrid systems control : theory, tools, applications , 2009 .

[10]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[11]  Norbert Th. Müller Enhancing imperative exact real arithmetic with functions and logic , 2009 .

[12]  Ker-I Ko,et al.  On the Computational Complexity of Ordinary Differential Equations , 1984, Inf. Control..

[13]  Joris van der Hoeven Fast composition of numeric power series ∗ , 2008 .

[14]  Tiziano Villa,et al.  Ariadne: a framework for reachability analysis of hybrid automata , 2006 .

[15]  Nedialko S. Nedialkov,et al.  Validated solutions of initial value problems for ordinary differential equations , 1999, Appl. Math. Comput..