Integrated Tunable Quantum-Dot Laser for Optical Coherence Tomography in the 1.7 $\mu{\rm m}$ Wavelength Region

In this paper, we present the design and characterization of a monolithically integrated tunable laser for optical coherence tomography in medicine. This laser is the first monolithic photonic integrated circuit containing quantum-dot amplifiers, phase modulators, and passive components. We demonstrate electro-optical tuning capabilities over 60 nm between 1685 and 1745 nm, which is the largest tuning range demonstrated for an arrayed waveguide grating controlled tunable laser. Furthermore, it demonstrates that the active-passive integration technology designed for the 1550 nm telecom wavelength region can also be used in the 1600-1800 nm region. The tunable laser has a 0.11 nm effective linewidth and an approximately 0.1 mW output power. Scanning capabilities of the laser are demonstrated in a free space Michelson interferometer setup where the laser is scanned over the 60 nm in 4000 steps with a 500 Hz scan frequency. Switching between two wavelengths within this 60 nm range is demonstrated to be possible within 500 ns.

[1]  M. Pistol,et al.  Calculations of the electronic structure of strained InAs quantum dots in InP , 2002 .

[2]  G. M. Hale,et al.  Optical Constants of Water in the 200-nm to 200-microm Wavelength Region. , 1973, Applied optics.

[3]  Michael A. Davis,et al.  Fiber grating sensors , 1997 .

[4]  G. Busico,et al.  Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[5]  Peter Blood,et al.  Determination of single-pass optical gain and internal loss using a multisection device , 1999 .

[6]  Hiroshi Ishikawa,et al.  Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled In x Ga 1-x As/GaAs quantum dot lasers , 2000 .

[7]  T. G. van Leeuwen,et al.  Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm , 2010, Biomedical optics express.

[8]  R. G. Walker,et al.  Simple and accurate loss measurement technique for semiconductor optical waveguides , 1985 .

[9]  B. Jalali,et al.  Silicon Photonics , 2006, Journal of Lightwave Technology.

[10]  R. Pepperkok,et al.  Spectral imaging and its applications in live cell microscopy , 2003, FEBS letters.

[11]  Yuqing Jiao,et al.  InP-Based Monolithically Integrated Tunable Wavelength Filters in the 1.6–1.8 $\mu$ m Wavelength Region for Tunable Laser Purposes , 2011, Journal of Lightwave Technology.

[12]  J. H. den Besten,et al.  Low-loss, compact, and polarization independent PHASAR demultiplexer fabricated by using a double-etch process , 2002, IEEE Photonics Technology Letters.

[13]  Y.-C. Xin,et al.  1.3-$\mu$m Quantum-Dot Multisection Superluminescent Diodes With Extremely Broad Bandwidth , 2007, IEEE Photonics Technology Letters.

[14]  T. Hänsch,et al.  Optical frequency metrology , 2002, Nature.

[15]  M. Smit,et al.  Measurement and analysis of optical gain spectra in 1.6 to 1.8 μm InAs/InP (100) quantum-dot amplifiers , 2009 .

[16]  M. Takenaka,et al.  InP–InGaAsP Integrated 1 $\times$ 5 Optical Switch Using Arrayed Phase Shifters , 2008, IEEE Photonics Technology Letters.

[17]  Roel Baets,et al.  InP-based Photonic Integration: Learning from CMOS , 2009, 2009 35th European Conference on Optical Communication.

[18]  Qian Gong,et al.  Wavelength tuning of InAs quantum dots grown on InP (100) by chemical-beam epitaxy , 2004 .

[19]  I. Montrosset,et al.  Numerical Analysis of the Frequency Chirp in Quantum-Dot Semiconductor Lasers , 2007, IEEE Journal of Quantum Electronics.

[20]  J. Fraser,et al.  InAs self-assembled quantum-dot lasers grown on (100) InP , 2002 .

[21]  B. Hakki,et al.  Gain spectra in GaAs double−heterostructure injection lasers , 1975 .

[22]  Y Yohan Barbarin,et al.  Lasing of wavelength-tunable (1.55μm region) InAs∕InGaAsP∕InP (100) quantum dots grown by metal organic vapor-phase epitaxy , 2006 .

[23]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[24]  L. M Gomes Pereira,et al.  Suitability of laser data for deriving geographical information: A case study in the context of management of fluvial zones , 1999 .

[25]  H. Zappe Introduction to Semiconductor Integrated Optics , 1995 .

[26]  D.H.P. Maat,et al.  InP-based Integrated MZI Switches for Optical Communication , 2001 .

[27]  M. Heck Ultrafast integrated semiconductor laser technology at 1.55 µm , 2008 .

[28]  L. Xu Monolithic integrated reflective transceiver in indium phosphide , 2009 .

[29]  S. Mikhrin,et al.  Quantum dot laser with 75 nm broad spectrum of emission. , 2007, Optics letters.

[30]  de T Tjibbe Vries,et al.  Butt joint integrated extended cavity InAs/ InP (100) quantum dot laser emitting around 1.55 μm , 2008 .

[31]  Peter Werle,et al.  A review of recent advances in semiconductor laser based gas monitors , 1998 .

[32]  H. Tsai,et al.  Large-scale photonic integrated circuits , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[33]  M. Smit,et al.  Self Assembled InAs/InP Quantum Dots for Telecom Applications in the 1.55 µm Wavelength Range: Wavelength Tuning, Stacking, Polarization Control, and Lasing , 2006 .

[34]  Mk Meint Smit,et al.  PHASAR-based WDM-devices: Principles, design and applications , 1996 .

[35]  Ching-Fuh Lin,et al.  Broad-band superluminescent diodes fabricated on a substrate with asymmetric dual quantum wells , 1996, IEEE Photonics Technology Letters.

[36]  Huug de Waardt,et al.  Novel reflective SOA with MMI-loop mirror based on semi-insultating InP , 2008 .

[37]  P. Muñoz,et al.  Design, Fabrication and Characterization of an InP-Based Tunable Integrated Optical Pulse Shaper , 2008, IEEE Journal of Quantum Electronics.

[38]  I. Montrosset,et al.  Numerical investigation of power tunability in two-section QD superluminescent diodes , 2008, 2008 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD).

[39]  P. Harmsma,et al.  Integration of semiconductor optical amplifiers in wavelength division multiplexing photonic integrated circuits , 2000 .

[40]  G. Erbert,et al.  Gain spectra measurements by a variable stripe length method with current injection , 1997 .

[41]  Marc Sorel,et al.  Operating regimes of GaAs-AlGaAs semiconductor ring lasers: experiment and model , 2003 .

[42]  H. Bukkems New approaches to widely tunable semiconductor lasers , 2006 .

[43]  Mk Meint Smit,et al.  MOVPE waveguide regrowth in InGaAs/InP with extremely low butt-joint loss , 2001 .

[44]  Mitsuru Sugawara,et al.  Light emission spectra of columnar-shaped self-assembled InGaAs/GaAs quantum-dot lasers: Effect of homogeneous broadening of the optical gain on lasing characteristics , 1999 .

[45]  S. Murthy,et al.  Large-Scale InP Photonic Integrated Circuits: Enabling Efficient Scaling of Optical Transport Networks , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[46]  M. Smit,et al.  Design of an integrated electro-optically tunable filter for tunable laser purposes , 2008 .

[47]  L.A. Coldren,et al.  Monolithic tunable diode lasers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[48]  de T Tjibbe Vries,et al.  First demonstration of single-layer InAs/InP (100) quantum-dot laser: continuous wave, room temperature, ground state , 2009 .

[49]  Mk Meint Smit,et al.  S-matrix oriented CAD-tool for simulating complex integrated optical circuits , 1996 .

[50]  M. S. Nawrocka,et al.  Tunable silicon microring resonator with wide free spectral range , 2006 .

[51]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[52]  K. Messmer,et al.  Orthogonal polarization spectral imaging: A new method for study of the microcirculation , 1999, Nature Medicine.

[53]  J. Fastenau,et al.  Quantum Dashes on InP Substrate for Broadband Emitter Applications , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[54]  Meint Meint Smit,et al.  Ultrafast InP optical integrated circuits , 2006, SPIE OPTO.

[55]  A. Schlachetzki,et al.  Optical parameters of InP-based waveguides , 1987 .

[56]  J. H. den Besten,et al.  An integrated coupled-cavity 16-wavelength digitally tunable laser , 2003, IEEE Photonics Technology Letters.

[57]  M.K. Smit,et al.  Wavelength selection in an integrated multiwavelength ring laser , 2004, IEEE Journal of Quantum Electronics.

[58]  S. Yun,et al.  In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. , 2004, Optics express.

[59]  Jeroen Kalkman,et al.  Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina. , 2011, Investigative ophthalmology & visual science.

[60]  M. Renaud,et al.  InP/GaInAsP guided-wave phase modulators based on carrier-induced effects: theory and experiment , 1992 .

[61]  Philippe Caroff,et al.  High-gain and low-threshold InAs quantum-dot lasers on InP , 2005 .

[62]  Jean-Pierre Weber,et al.  Optimization of the carrier-induced effective index change in InGaAsP waveguides-application to tunable Bragg filters , 1994 .

[63]  M. Smit,et al.  Gain measurements of Fabry-Perot InP/InGaAsP lasers using an ultrahigh-resolution spectrometer. , 2006, Applied optics.

[64]  T. Maiman Stimulated Optical Radiation in Ruby , 1960, Nature.

[65]  O. Dehaese,et al.  Electronic structure and carrier dynamics in InAs/InP double-cap quantum dots , 2009 .

[66]  Xuming Zhang,et al.  A review of MEMS external-cavity tunable lasers , 2006 .

[67]  H. H. Rosenbrock,et al.  Some general implicit processes for the numerical solution of differential equations , 1963, Comput. J..

[68]  I. Montrosset,et al.  Spectral Analysis of 1.55- $\mu$m InAs–InP(113)B Quantum-Dot Lasers Based on a Multipopulation Rate Equations Model , 2009, IEEE Journal of Quantum Electronics.

[69]  M. Brezinski Optical Coherence Tomography: Principles and Applications , 2006 .

[70]  Y. Barbarin 1.55 μm integrated modelocked semiconductor lasers , 2007 .

[71]  den Jh Jan Hendrik Besten Integration of multiwavelength lasers with fast electro-optical modulators , 2004 .

[72]  Jem Jos Haverkort,et al.  Ultrafast carrier capture at room temperature in InAs∕InP quantum dots emitting in the 1.55μm wavelength region , 2005 .

[73]  Dirk J. Faber,et al.  Recent developments in optical coherence tomography for imaging the retina , 2007, Progress in Retinal and Eye Research.

[74]  D. Bimberg,et al.  Ultrafast gain dynamics in InAs-InGaAs quantum-dot amplifiers , 2000, IEEE Photonics Technology Letters.

[75]  C.R. Doerr,et al.  40-wavelength rapidly digitally tunable laser , 1999, IEEE Photonics Technology Letters.

[76]  Manijeh Razeghi,et al.  Optical and crystallographic properties and impurity incorporation of GaxIn1−xAs (0.44 , 1983 .

[77]  S. Chandrasekhar,et al.  Low-voltage high-speed travelling wave InGaAsP-InP phase modulator , 2004, IEEE Photonics Technology Letters.

[78]  Rg Ronald Broeke,et al.  A Wavelength Converter Integrated with a Discretely Tunable Laser for Wavelength Division Multiplexing Networks , 2003 .

[79]  Y. Hibino,et al.  10 GHz spacing optical frequency division multiplexer based on arrayed-waveguide grating , 1992 .

[80]  M.K. Smit,et al.  A Tunable-MMI-Coupler-Based Wavelength Adjustable Laser , 2007, IEEE Journal of Quantum Electronics.