Progress in X-ray microbeam spectroscopy

X-ray spectroscopy has been widely used for chemical analysis since its discovery in 1895. X-ray fluorescence (XRF) has been used for over 60 years for identifying the elemental composition in most kinds of samples and in combination with modern semiconductor detector technology XRF has developed into a versatile, multi-element method. With the high X-ray flux attainable from the synchrotron source, new spectroscopic techniques have become available, such as extended x-ray absorption fine structure (EXAFS) and x-ray absorption near-edge spectroscopy (XANES), for studying the chemical states of the different elements. With the use of high-intensity x-ray microbeams all of these different analytical methods can be performed on a microscopic level. By scanning the microbeam over a sample, the distribution of different elements can be determined. A description of the basic principles of x-ray microbeam spectroscopy, and the historical background, is given and comparisons with other techniques are discussed. Different techniques for focusing of x-rays, detection and image reconstruction are described. Examples of applications and future perspectives are discussed with particular emphasis on capillary optical systems.

[1]  Per Engström,et al.  Microbeam technique for energy‐dispersive x‐ray fluorescence , 1989 .

[2]  P. Engström,et al.  X-Ray Microbeam Spectroscopy with the Use of Capillary Optics , 1991 .

[3]  S. Stephanakis,et al.  X‐ray ’’light pipes’’ , 1976 .

[4]  R. Glocker,et al.  Quantitative Röntgenspektralanalyse mit Kalterregung des Spektrums , 1928 .

[5]  N. Yamamoto,et al.  Development of an Innovative 5 μmφ Focused X-Ray Beam Energy-Dispersive Spectrometer and its Applications : Materials and Device Structures with Atomic Scale Resolution( Solid State Devices and Materials 1) , 1988 .

[6]  Hans Wolter,et al.  Verallgemeinerte Schwarzschildsche Spiegelsysteme streifender Reflexion als Optiken für Röntgenstrahlen , 1952 .

[7]  H. Seemann Eine fokussierende röntgenspektroskopische Anordnung für Kristallpulver , 1919 .

[8]  Properties of X-ray guides , 1977 .

[9]  A. Wilson X-ray Diffraction by Polycrystalline Materials edited by H. S. Peiser, H. P. Rooksby and A. J. C. Wilson , 1955 .

[10]  W. Ehrenberg,et al.  Über die Auslösung von Photoelektronen durch Röntgenstrahlen aus Metallspiegeln an der Grenze der Totalreflexion , 1929 .

[11]  H. Wolter Spiegelsysteme streifenden Einfalls als abbildende Optiken für Röntgenstrahlen , 1952 .

[12]  P. Horowitz,et al.  A Scanning X-Ray Microscope Using Synchrotron Radiation , 1972, Science.

[13]  M. Taylor,et al.  Applications of a laboratory x-ray microprobe to materials analysis , 1988 .

[14]  A. Rindby,et al.  X-ray Capillary Microbeam Spectrometer , 1989 .

[15]  W. Ehrenberg,et al.  X-Ray Optics , 1947, Nature.

[16]  V. Cosslett,et al.  An experimental X-ray shadow microscope , 1952, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[17]  E. Stern,et al.  Guiding and concentrating hard x-rays by using a flexible hollow-core tapered glass fiber. , 1992, Applied optics.

[18]  R. Pantell,et al.  Transmission of X-rays through curved waveguides , 1978 .

[19]  A. H. Compton,et al.  CXVII. The total reflexion of X-rays , 1923 .

[20]  R. Sievert Two Methods of Roentgen Micro-Photography: (Preliminary report) , 1936 .

[21]  P. Kirkpatrick,et al.  Formation of optical images by X-rays. , 1948, Journal of the Optical Society of America.

[22]  A. Rindby,et al.  X-ray microbeam spectroscopy: a biological application , 1990 .

[23]  Tryggve Johansson,et al.  Über ein neuartiges, genau fokussierendes Röntgenspektrometer , 1933 .

[24]  S. Sutton,et al.  Synchrotron X‐ray fluorescence microscopy , 1991 .

[25]  H. H. Johann,et al.  Die Erzeugung lichtstarker Röntgenspektren mit Hilfe von Konkavkristallen , 1931 .

[26]  Anders Rindby,et al.  Applications of fiber technique in the X-ray region , 1986 .