Robust D-stability test of LTI general fractional order control systems

This work deals with the robust D-stability test of linear time-invariant ( LTI ) general fractional order control systems in a closed loop where the system and / or the controller may be of fractional order. The concept of general implies that the characteristic equation of the LTI closed loop control system may be of both commensurate and non-commensurate orders, both the coefficients and the orders of the characteristic equation may be nonlinear functions of uncertain parameters, and the coefficients may be complex numbers. Some new specific areas for the roots of the characteristic equation are found so that they reduce the computational burden of testing the robust D-stability. Based on the value set of the characteristic equation, a necessary and sufficient condition for testing the robust D-stability of these systems is derived. Moreover, in the case that the coefficients are linear functions of the uncertain parameters and the orders do not have any uncertainties, the condition is adjusted for further computational burden reduction. Various numerical examples are given to illustrate the merits of the achieved theorems.

[1]  Wang Li,et al.  Robust stability analysis for a class of fractional order systems with uncertain parameters , 2011, J. Frankl. Inst..

[2]  Zhe Gao,et al.  Robust stabilization criterion of fractional-order controllers for interval fractional-order plants , 2015, Autom..

[3]  Mohammed Chadli,et al.  Robust admissibility and stabilization of uncertain singular fractional-order linear time-invariant systems , 2019, IEEE/CAA Journal of Automatica Sinica.

[4]  Mohsen Fathi Jegarkandi,et al.  Robust D-Stability Testing Function for LTI Fractional Order Interval Systems , 2018, 2018 IEEE Conference on Control Technology and Applications (CCTA).

[5]  Hamed Taghavian,et al.  Robust stability analysis of uncertain multiorder fractional systems: Young and Jensen inequalities approach , 2018 .

[6]  YangQuan Chen,et al.  Tuning and auto-tuning of fractional order controllers for industry applications , 2008 .

[7]  Michal Góra,et al.  Comments on "Necessary and sufficient stability condition of fractional-order interval linear systems" [Automatica 44 (2008), 2985-2988] , 2014, Autom..

[8]  Mohammad Haeri,et al.  On robust stability of LTI fractional-order delay systems of retarded and neutral type , 2010, Autom..

[9]  Yangquan Chen,et al.  Fractional order modeling of human operator behavior with second order controlled plant and experiment research , 2016, IEEE/CAA Journal of Automatica Sinica.

[10]  Shin Ju Chen,et al.  Robust D-stability of discrete and continuous time interval systems , 2004, J. Frankl. Inst..

[11]  Mohamed Darouach,et al.  Robust stabilization of uncertain descriptor fractional-order systems , 2013, Autom..

[12]  Nusret Tan,et al.  Robust stability analysis of fractional order interval polynomials. , 2009, ISA transactions.

[13]  Graziano Chesi Parameter and Controller Dependent Lyapunov Functions for Robust D-Stability and Robust Performance Controller Design , 2017, IEEE Transactions on Automatic Control.

[14]  YangQuan Chen,et al.  An iterative learning approach to identify fractional order KiBaM model , 2017, IEEE/CAA Journal of Automatica Sinica.

[15]  Reza Mohsenipour,et al.  Robust Performance Control of Space Tether Deployment Using Fractional Order Tension Law , 2020 .

[16]  Shiqi Zheng,et al.  Robust stability of fractional order system with general interval uncertainties , 2017, Syst. Control. Lett..

[17]  Bilal Senol,et al.  Investigation of robust stability of fractional order multilinear affine systems: 2q2q-convex parpolygon approach , 2013, Syst. Control. Lett..

[18]  Mohsen Fathi Jegarkandi,et al.  A comment on "Algorithm of robust stability region for interval plant with time delay using fractional order PIλDμ controller" [Commun Nonlinear Sci Numer Simulat 17 (2012) 979-991] , 2018, Commun. Nonlinear Sci. Numer. Simul..

[19]  Qigui Yang,et al.  Chaos and combination synchronization of a new fractional-order system with two stable node-foci , 2016, IEEE/CAA Journal of Automatica Sinica.

[20]  Reza Mohsenipour,et al.  Robust ‐stability analysis of fractional order interval systems of commensurate and incommensurate orders , 2019, IET Control Theory & Applications.

[21]  Shiqi Zheng,et al.  Graphical tuning method of FOPID controllers for fractional order uncertain system achieving robust D ‐stability , 2016 .

[22]  B. Alagoz A note on robust stability analysis of fractional order interval systems by minimum argument vertex and edge polynomials , 2016, IEEE/CAA Journal of Automatica Sinica.

[23]  Mohammad Haeri,et al.  Robust stability testing function and Kharitonov-like theorem for fractional order interval systems , 2010 .

[24]  Clara-Mihaela Ionescu,et al.  The role of fractional calculus in modeling biological phenomena: A review , 2017, Commun. Nonlinear Sci. Numer. Simul..

[25]  Jonathan R. Partington,et al.  Analysis of fractional delay systems of retarded and neutral type , 2002, Autom..

[26]  Jozef C. van der Ha,et al.  Stability of Spinning Satellite Under Axial Thrust, Internal Mass Motion, and Damping , 2015 .

[27]  Miguel Bernal,et al.  Comments on “Robust Stability and Stabilization of Fractional-Order Interval Systems With the Fractional Order $\alpha$: The $0<\alpha<1$ Case” , 2015, IEEE Transactions on Automatic Control.

[28]  Hongyong Yang,et al.  Containment Control of Fractional Order Multi-Agent Systems With Time Delays , 2018, IEEE/CAA Journal of Automatica Sinica.

[29]  Jun-Guo Lu,et al.  Decentralised robust H∞ control of fractional-order interconnected systems with uncertainties , 2017, Int. J. Control.

[30]  Xiaozhong Liao,et al.  Robust stability criterion of fractional-order functions for interval fractional-order systems , 2013 .

[31]  Guanghui Sun,et al.  Engineering Notes Fractional-Order Tension Control Law for Deployment of Space Tether System , 2014 .

[32]  Mohammad Haeri,et al.  On robust stability of linear time invariant fractional-order systems with real parametric uncertainties. , 2009, ISA transactions.

[33]  S. Pradeep A new tension control law for deployment of tethered satellites , 1997 .

[34]  Tong Zhang,et al.  Robust output feedback control for fractional order nonlinear systems with time-varying delays , 2016, IEEE/CAA Journal of Automatica Sinica.

[35]  Bilal Senol,et al.  A numerical investigation for robust stability of fractional-order uncertain systems. , 2014, ISA transactions.

[36]  J. Liang,et al.  Hybrid symbolic and numerical simulation studies of time-fractional order wave-diffusion systems , 2006 .

[37]  Taous-Meriem Laleg-Kirati,et al.  Robust fractional-order proportional-integral observer for synchronization of chaotic fractional-order systems , 2019, IEEE/CAA Journal of Automatica Sinica.

[38]  C. Desoer,et al.  An elementary proof of Kharitonov's stability theorem with extensions , 1989 .

[39]  Mohsen Fathi Jegarkandi,et al.  Fractional order MIMO controllers for robust performance of airplane longitudinal motion , 2019 .

[40]  Jun Xu,et al.  Stochastic dynamic response and reliability assessment of controlled structures with fractional derivative model of viscoelastic dampers , 2016 .

[41]  K. Diethelm The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type , 2010 .

[42]  Shiqi Zheng,et al.  Stabilizing region of PDμ controller for fractional order system with general interval uncertainties and an interval delay , 2018, J. Frankl. Inst..