SARUS: A synthetic aperture real-time ultrasound system

The Synthetic Aperture Real-time Ultrasound System (SARUS) for acquiring and processing synthetic aperture (SA) data for research purposes is described. The specifications and design of the system are detailed, along with its performance for SA, nonlinear, and 3-D flow estimation imaging. SARUS acquires individual channel data simultaneously for up to 1024 transducer elements for a couple of heart beats, and is capable of transmitting any kind of excitation. The 64 boards in the system house 16 transmit and 16 receive channels each, where sampled channel data can be stored in 2 GB of RAM and processed using five field-programmable gate arrays (FPGAs). The fully parametric focusing unit calculates delays and apodization values in real time in 3-D space and can produce 350 million complex samples per channel per second for full non-recursive synthetic aperture B-mode imaging at roughly 30 high-resolution images/s. Both RF element data and beamformed data can be stored in the system for later storage and processing. The stored data can be transferred in parallel using the system's sixty-four 1-Gbit Ethernet interfaces at a theoretical rate of 3.2 GB/s to a 144-core Linux cluster.

[1]  Yongmin Kim,et al.  Research interface on a programmable ultrasound scanner. , 2008, Ultrasonics.

[2]  J. Jensen,et al.  An effective coded excitation scheme based on a predistorted FM signal and an optimized digital filter , 1999, 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027).

[3]  Kazys,et al.  Application of orthogonal ultrasonic signals and binaural processing for imaging of the environment , 2000, Ultrasonics.

[4]  M. Fox Multiple crossed-beam ultrasound Doppler velocimetry , 1978 .

[5]  Pai-Chi Li,et al.  Improved synthetic aperture focusing technique with applications in high-frequency ultrasound imaging. , 2004, IEEE transactions on ultrasonics, ferroelectrics, and frequency control.

[6]  J. Jensen,et al.  Multielement synthetic transmit aperture imaging using temporal encoding , 2003, IEEE Transactions on Medical Imaging.

[7]  J. Capon High-resolution frequency-wavenumber spectrum analysis , 1969 .

[8]  Peng Jiang,et al.  A new tissue harmonic imaging scheme with better fundamental frequency cancellation and higher signal-to-noise ratio , 1998, 1998 IEEE Ultrasonics Symposium. Proceedings (Cat. No. 98CH36102).

[9]  A. Austeng,et al.  Adaptive Beamforming Applied to Medical Ultrasound Imaging , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[10]  M. O'Donnell,et al.  A new filter design technique for coded excitation systems , 1992, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[11]  S. Nikolov,et al.  Directional synthetic aperture flow imaging , 2004, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[12]  Jørgen Arendt Jensen,et al.  Non-linear Imaging sing an Experimental Synthetic Aperture Real Time Ultrasound Scanner , 2011 .

[13]  Navalgund Rao,et al.  Investigation of a pulse compression technique for medical ultrasound: a simulation study , 1994, Medical and Biological Engineering and Computing.

[14]  K V Ramnarine,et al.  Validation of a new blood-mimicking fluid for use in Doppler flow test objects. , 1998, Ultrasound in medicine & biology.

[15]  F. Gran,et al.  Designing Waveforms for Temporal Encoding Using a Frequency Sampling Method , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[16]  M. O'Donnell,et al.  Coded excitation system for improving the penetration of real-time phased-array imaging systems , 1992, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[17]  John C. Lazenby,et al.  Ultrasound imaging system employing phase inversion subtraction to enhance the image , 1998 .

[18]  J.A. Jensen,et al.  Use of modulated excitation signals in medical ultrasound. Part I: basic concepts and expected benefits , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[19]  T K Song,et al.  A Study of the Display Pixel-Based Focusing Method in Ultrasound Imaging , 2001, Ultrasonic imaging.

[20]  Kim L Gammelmark,et al.  In-vivo evaluation of convex array synthetic aperture imaging. , 2007, Ultrasound in medicine & biology.

[21]  J. Jensen,et al.  A transverse oscillation approach for estimation of three-dimensional velocity vectors, Part II: experimental validation , 2014, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[22]  P. Lewin,et al.  Pulse elongation and deconvolution filtering for medical ultrasonic imaging , 1995, 1995 IEEE Ultrasonics Symposium. Proceedings. An International Symposium.

[23]  J. Jensen Estimation of Blood Velocities Using Ultrasound: A Signal Processing Approach , 1996 .

[24]  Moo-Ho Bae,et al.  Experimental study of transmit synthetic focusing combined with receive dynamic focusing in B-mode ultrasound imaging systems , 1999, 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027).

[25]  Quan Chen,et al.  The ultrasonix 500RP: A commercial ultrasound research interface , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[26]  Y Takeuchi,et al.  An investigation of a spread energy method for medical ultrasound systems. Part one: theory and investigation. , 1979, Ultrasonics.

[27]  R. Y. Chiao,et al.  Synthetic transmit aperture imaging using orthogonal Golay coded excitation , 2000, 2000 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.00CH37121).

[28]  Jørgen Arendt Jensen,et al.  Sequential beamforming for synthetic aperture imaging. , 2013, Ultrasonics.

[29]  P. Burns,et al.  Pulse inversion Doppler: a new method for detecting nonlinear echoes from microbubble contrast agents , 1997, 1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118).

[30]  Han-Woo Lee,et al.  A new ultrasonic Synthetic Aperture tissue Harmonic imaging system , 2008, 2008 IEEE Ultrasonics Symposium.

[31]  T. Misaridis,et al.  Use of modulated excitation signals in medical ultrasound. Part II: design and performance for medical imaging applications , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[32]  J.A. Jensen,et al.  Synthetic Aperture Sequential Beamforming , 2008, 2008 IEEE Ultrasonics Symposium.

[33]  A. Dallai,et al.  ULA-OP: an advanced open platform for ultrasound research , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[34]  Yigang Du,et al.  Second harmonic imaging using synthetic aperture sequential beamforming , 2011, 2011 IEEE International Ultrasonics Symposium.

[35]  C.E. Burckhardt,et al.  An Experimental 2 MHz Synthetic Aperture Sonar System Intended for Medical Use , 1974, IEEE Transactions on Sonics and Ultrasonics.

[36]  J. Arendt Jensen,et al.  Duplex synthetic aperture imaging with tissue motion compensation , 2003 .

[37]  H. Ermert,et al.  Chirp signal matching and signal power optimization in pulse-echo mode ultrasonic nondestructive testing , 1994, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[38]  Jørgen Arendt Jensen,et al.  Synthetic aperture ultrasound imaging. , 2006, Ultrasonics.

[39]  J.A. Jensen,et al.  Ultrasound research scanner for real-time synthetic aperture data acquisition , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[40]  Fredrik Gran,et al.  Coded ultrasound for blood flow estimation using subband processing , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[41]  J.A. Jensen,et al.  8A-3 System Architecture of an Experimental Synthetic Aperture Real-Time Ultrasound System , 2007, 2007 IEEE Ultrasonics Symposium Proceedings.

[42]  G. Trahey,et al.  Angle Independent Ultrasonic Detection of Blood Flow , 1987, IEEE Transactions on Biomedical Engineering.

[43]  Jian-yu Lu,et al.  High frame rate imaging system for limited diffraction array beam imaging with square-wave aperture weightings high frame rate imaging system for limited diffraction array beam imaging with square-wave aperture weightings , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[44]  W. W. Hansen Real-Time Digital Image Reconstruction: A Description of Imaging Hardware and an Analysis of Quantization Errors , 1984 .

[45]  H. Andresen,et al.  Rocking convex array used for 3D synthetic aperture focusing , 2008, 2008 IEEE Ultrasonics Symposium.

[46]  M. O'Donnell,et al.  Subaperture processing for ultrasonic imaging , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[47]  F. Gran,et al.  Spatial encoding using a code division technique for fast ultrasound imaging , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[48]  Piero Tortoli,et al.  Introduction to the Special Issue on Novel Equipment for Ultrasound Research , 2006 .

[49]  J. Y. Chapelon Pseudo-random correlation imaging and system characterization , 1988 .

[50]  Jørgen Arendt Jensen,et al.  An object-oriented multi-threaded software beamformation toolbox , 2011, Medical Imaging.

[51]  G. Trahey,et al.  Synthetic receive aperture imaging with phase correction for motion and for tissue inhomogeneities. II. Effects of and correction for motion , 1992, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[52]  K. Kristoffersen,et al.  Analysis of worst-case phase quantization sidelobes in focused beamforming , 1992, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[53]  B. Khuri-Yakub,et al.  Capacitive micromachined ultrasonic transducers: next-generation arrays for acoustic imaging? , 2002, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[54]  H. Ermert,et al.  Ultrasound synthetic aperture imaging: monostatic approach , 1994, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[55]  Jørgen Arendt Jensen,et al.  A transverse oscillation approach for estimation of three-dimensional velocity vectors, Part I: concept and simulation study , 2014, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[56]  T. Misaridis,et al.  Complex pulsing schemes for high frame rate imaging , 2002, 2002 IEEE Ultrasonics Symposium, 2002. Proceedings..

[57]  Yigang Du,et al.  Third harmonic imaging using pulse inversion , 2011, 2011 IEEE International Ultrasonics Symposium.

[58]  J.A. Jensen,et al.  Effects Influencing Focusing in Synthetic Aperture Vector Flow Imaging , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[59]  J.A. Jensen,et al.  Fast parametric beamformer for synthetic aperture imaging , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[60]  David A. Johns,et al.  Analog Integrated Circuit Design , 1996 .

[61]  Jørgen Arendt Jensen,et al.  Implementation of a versatile research data acquisition system using a commercially available medical ultrasound scanner , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[62]  E.S. Ebbini,et al.  A new coded-excitation ultrasound imaging system. I. Basic principles , 1996, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[63]  M.E. Aderson,et al.  Multi-dimensional velocity estimation with ultrasound using spatial quadrature , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[64]  T. Misaridis,et al.  Use of modulated excitation signals in medical ultrasound. Part III: high frame rate imaging , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[65]  J. A. Jensen,et al.  Sampling system for in vivo ultrasound images , 1991, Medical Imaging.

[66]  H. Andresen,et al.  Comparing interpolation schemes in dynamic receive ultrasound beamforming , 2005, IEEE Ultrasonics Symposium, 2005..

[67]  F. Gran,et al.  Broadband minimum variance beamforming for ultrasound imaging , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[68]  M. O'Donnell,et al.  Synthetic aperture imaging for small scale systems , 1995, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[69]  C. Kasai,et al.  Real-Time Two-Dimensional Blood Flow Imaging Using an Autocorrelation Technique , 1985, IEEE Transactions on Sonics and Ultrasonics.

[70]  J. Jensen,et al.  Measuring 3D velocity vectors using the Transverse Oscillation method , 2012, 2012 IEEE International Ultrasonics Symposium.

[71]  J. Jensen,et al.  A new method for estimation of velocity vectors , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.