Single-mode distributed feedback and microlasers based on quantum-dot gain material

Quantum-dot gain material fabricated by self-organized epitaxial growth on GaAs substrates is used for the realization of 980-nm and 1.3-/spl mu/m single-mode distributed feedback (DFB) lasers and edge-emitting microlasers. Quantum-dot specific properties such as low-threshold current, broad gain spectrum, and low-temperature sensitivity could be demonstrated on ridge waveguide and DFB lasers in comparison to quantum-well-based devices. 980-nm DFB lasers exhibit stable single-mode behavior from 20/spl deg/C up to 214/spl deg/C with threshold currents 1 mW was obtained for 30-/spl mu/m cavity length. Low-threshold currents of 4.4 mA could be obtained for 1.3-/spl mu/m emitting 400-/spl mu/m-long high-reflection coated ridge waveguide lasers. DFB lasers made from this material by laterally complex coupled feedback gratings show stable CW single-mode emission up to 80/spl deg/C with sidemode suppression ratios exceeding 40 dB.

[1]  Johann Peter Reithmaier,et al.  Correlation between the gain profile and the temperature-induced shift in wavelength of quantum-dot lasers , 2002 .

[2]  K.J. Kasunic Design equations for the reflectivity of deep-etch distributed Bragg reflector gratings , 2000, Journal of Lightwave Technology.

[3]  A. Forchel,et al.  High Performance 1.3 µm Quantum-Dot Lasers , 2002 .

[4]  A. Rahimi-Iman,et al.  Quantum dot microlasers , 2009, 2009 Asia Communications and Photonics conference and Exhibition (ACP).

[5]  A. Stintz,et al.  Optical characteristics of 1.24-μm InAs quantum-dot laser diodes , 1999, IEEE Photonics Technology Letters.

[6]  Johann Peter Reithmaier,et al.  High frequency characteristics of InAs/GaInAs quantum dot distributed feedback lasers emitting at 1.3 /spl mu/m , 2001 .

[7]  A. Wolf,et al.  InAs/GaInAs quantum dot DFB lasers emitting at 1.3 µm , 2001 .

[8]  Johann Peter Reithmaier,et al.  Highly efficient GaInAs/(Al)GaAs quantum-dot lasers based on a single active layer versus 980 nm high-power quantum-well lasers , 2000 .

[9]  Johann Peter Reithmaier,et al.  High-temperature properties of GaInAs/AlGaAs lasers with improved carrier confinement by short-period superlattice quantum well barriers , 1998 .

[10]  D. Deppe,et al.  Low-threshold continuous-wave two-stack quantum-dot laser with reduced temperature sensitivity , 2000, IEEE Photonics Technology Letters.

[11]  R. Jambunathan,et al.  Design studies for distributed Bragg reflectors for short-cavity edge-emitting lasers , 1997 .

[12]  Reactive ion etching of deeply etched DBR-structures with reduced air-gaps for highly reflective monolithically integrated laser mirrors , 2001 .

[13]  A. Forchel,et al.  Low threshold high efficiency MBE grown GaInAs/(Al)GaAs quantum dot lasers emitting at 980 nm , 2001 .

[14]  N. Ledentsov,et al.  Low-threshold injection lasers based on vertically coupled quantum dots , 1997 .

[15]  Johann Peter Reithmaier,et al.  High-performance GaInAs/GaAs quantum-dot lasers based on a single active layer , 1999 .

[16]  M. Asada,et al.  Gain and the threshold of three-dimensional quantum-box lasers , 1986 .

[17]  Nikolai N. Ledentsov,et al.  1.3 [micro sign]m GaAs-based laser using quantum dots obtained by activated spinodal decomposition , 1999 .

[18]  A. Stintz,et al.  Low-threshold current density 1.3-μm InAs quantum-dot lasers with the dots-in-a-well (DWELL) structure , 2000, IEEE Photonics Technology Letters.

[19]  Andreas Stintz,et al.  Extremely low room-temperature threshold current density diode lasers using InAs dots in In/sub 0.15/Ga/sub 0.85/As quantum well , 1999 .

[20]  K. Nishi,et al.  Low chirp observed in directly modulated quantum dot lasers , 2000, IEEE Photonics Technology Letters.

[21]  A. Forchel,et al.  High-temperature operating 1.3-μm quantum-dot lasers for telecommunication applications , 2001, IEEE Photonics Technology Letters.

[22]  A. R. Kovsh,et al.  Progress in Quantum Dot Lasers: 1100 nm, 1300 nm, and High Power Applications , 2000 .

[23]  D. Deppe,et al.  1.3 μm room-temperature GaAs-based quantum-dot laser , 1998 .

[24]  A. Stintz,et al.  Gain and linewidth enhancement factor in InAs quantum-dot laser diodes , 1999, IEEE Photonics Technology Letters.

[25]  Johann Peter Reithmaier,et al.  Quantum-dot microlasers as high-speed light sources for monolithic integration , 2001, Proceedings 27th European Conference on Optical Communication (Cat. No.01TH8551).

[26]  Johann Peter Reithmaier,et al.  Low-threshold high-quantum-efficiency laterally gain-coupled InGaAs/AlGaAs distributed feedback lasers , 1999 .

[27]  Diana L. Huffaker,et al.  InGaAs quantum dot lasers with submilliamp thresholds and ultra-low threshold current density below room temperature , 2000 .

[28]  Michel Calligaro,et al.  High-performance 980 nm quantum dot lasers for high-power applications , 2001 .

[29]  Johann Peter Reithmaier,et al.  Edge-emitting microlasers with one active layer of quantum dots , 2001 .

[30]  Johann Peter Reithmaier,et al.  980-nm quantum dot lasers for high-power applications , 2002, SPIE OPTO.

[31]  H. Ishikawa,et al.  1.3-/spl mu/m CW lasing characteristics of self-assembled InGaAs-GaAs quantum dots , 2000, IEEE Journal of Quantum Electronics.

[32]  Andreas Stintz,et al.  Low-threshold quantum dot lasers with 201 nm tuning range , 2000 .