A Tverberg-type result on multicolored simplices
暂无分享,去创建一个
[1] Karol Borsuk. Drei Sätze über die n-dimensionale euklidische Sphäre , 1933 .
[2] I. Bárány,et al. A Colored Version of Tverberg's Theorem , 1992 .
[3] R. Pollack,et al. Geometric Transversal Theory , 1993 .
[4] H. Tverberg. A Generalization of Radon's Theorem , 1966 .
[5] J. Radon. Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten , 1921 .
[6] E. Szemerédi. Regular Partitions of Graphs , 1975 .
[7] Rephael Wenger,et al. Bounding the number of geometric permutations induced by k-transversals , 1994, SCG '94.
[8] Noga Alon,et al. Point Selections and Weak ε-Nets for Convex Hulls , 1992, Combinatorics, Probability and Computing.
[9] Gil Kalai,et al. Intersection patterns of convex sets , 1984 .
[10] Vojtech Rödl,et al. The Uniformity Lemma for hypergraphs , 1992, Graphs Comb..
[11] Fan Chung Graham,et al. Regularity Lemmas for Hypergraphs and Quasi-randomness , 1991, Random Struct. Algorithms.
[12] Zoltán Füredi,et al. On the number of halving planes , 1989, SCG '89.
[13] Sinisa T. Vrecica,et al. The Colored Tverberg's Problem and Complexes of Injective Functions , 1992, J. Comb. Theory, Ser. A.
[14] Rephael Wenger,et al. Bounding the Number of Geometric Permutations Induced byk-Transversals , 1996, J. Comb. Theory, Ser. A.
[15] M. Katchalski,et al. A problem of geometry in ⁿ , 1979 .