Scaling MOSFETs to 10 nm: Coulomb effects, source starvation, and virtual source model

In our attempts to scale FETs to the 10 nm length, alternatives to conventional Si CMOS are sought on the grounds that: (1) Si seems to have reached its technological and performance limits and (2) the use of alternative high-mobility channel materials will provide the missing performance. With the help of numerical simulations here we establish the reasons why indeed Si seems to have hit an intrinsic performance barrier and whether or not high mobility semiconductors can indeed grant us our wishes. The role of long-and short-range electron-electron interactions are revisited together with a recent analysis of the historical performance trends. The density-of-states (DOS) bottleneck and source starvation issues are also reviewed to see what advantage alternative substrates may bring us. Finally, the well-known ‘virtual source model’ is analyzed to assess whether it can be used as a quantitative tool to guide us to the 10 nm gate length.

[1]  M. Fischetti Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures. I. Homogeneous transport , 1991 .

[2]  G. Ghibaudo,et al.  Unexpected mobility degradation for very short devices : A new challenge for CMOS scaling , 2006, 2006 International Electron Devices Meeting.

[3]  M. Lundstrom,et al.  Physics of Carrier Backscattering in One- and Two-Dimensional Nanotransistors , 2009, IEEE Transactions on Electron Devices.

[4]  S. Laux,et al.  Long-range Coulomb interactions in small Si devices. Part I: Performance and reliability , 2001 .

[5]  M. A. Islam,et al.  Einstein–Smoluchowski Diffusion Equation: A Discussion , 2004 .

[6]  A. G. Rojo,et al.  Electron-drag effects in coupled electron systems , 1999, cond-mat/9902050.

[7]  I. Eisele,et al.  Experimental verification of the nature of the high energy tail in the electron energy distribution in n-channel MOSFETs , 2001, IEEE Electron Device Letters.

[8]  S. Laux A Simulation Study of the Switching Times of 22- and 17-nm Gate-Length SOI nFETs on High Mobility Substrates and Si , 2007, IEEE Transactions on Electron Devices.

[9]  L. Selmi,et al.  Understanding quasi-ballistic transport in nano-MOSFETs: part II-Technology scaling along the ITRS , 2005, IEEE Transactions on Electron Devices.

[10]  Chenming Hu,et al.  A folded-channel MOSFET for deep-sub-tenth micron era , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[11]  S. Deleonibus,et al.  Experimental Investigation on the Quasi-Ballistic Transport: Part II—Backscattering Coefficient Extraction and Link With the Mobility , 2009, IEEE Transactions on Electron Devices.

[12]  S. Laux,et al.  Monte Carlo study of sub-band-gap impact ionization in small silicon field-effect transistors , 1995, Proceedings of International Electron Devices Meeting.

[13]  A. J. Williamson,et al.  Pseudopotential study of electron-hole excitations in colloidal free-standing InAs quantum dots , 1999, cond-mat/9908158.

[14]  L. Selmi,et al.  Understanding quasi-ballistic transport in nano-MOSFETs: part I-scattering in the channel and in the drain , 2005, IEEE Transactions on Electron Devices.

[15]  Martin M. Frank,et al.  Advanced high-k dielectric stacks with polySi and metal gates: Recent progress and current challenges , 2006, IBM J. Res. Dev..

[16]  K. Natori,et al.  Ballistic MOSFET reproduces current-voltage characteristics of an experimental device , 2002, IEEE Electron Device Letters.

[17]  R. Chau,et al.  Advanced depleted-substrate transistors: Single-gate, double-gate, and Tri-gate , 2002 .

[18]  M. Rodwell,et al.  Simulation of Electron Transport in High-Mobility MOSFETs: Density of States Bottleneck and Source Starvation , 2007, 2007 IEEE International Electron Devices Meeting.

[19]  N. Sano,et al.  3D Monte Carlo analysis of potential fluctuations under high electron concentrations , 2008 .

[20]  Zunger,et al.  Empirical atomic pseudopotentials for AlAs/GaAs superlattices, alloys, and nanostructures. , 1994, Physical review. B, Condensed matter.

[21]  Massimo V. Fischetti,et al.  Anatomy of Carrier Backscattering in Silicon Nanowire Transistors , 2009, 2009 13th International Workshop on Computational Electronics.

[22]  W. Shockley,et al.  Diffusion and Drift of Minority Carriers in Semiconductors for Comparable Capture and Scattering Mean Free Paths , 1962 .

[23]  Yuan Taur,et al.  On the scaling limit of ultrathin SOI MOSFETs , 2006 .

[24]  Alex Zunger,et al.  Resonant hole localization and anomalous optical bowing in InGaN alloys , 1999 .

[25]  A. Gnudi,et al.  Quasi-Ballistic Transport in Nanowire Field-Effect Transistors , 2008, IEEE Transactions on Electron Devices.

[26]  S. Deleonibus,et al.  Experimental Investigation on the Quasi-Ballistic Transport: Part I—Determination of a New Backscattering Coefficient Extraction Methodology , 2009, IEEE Transactions on Electron Devices.

[27]  Mark S. Lundstrom Elementary scattering theory of the Si MOSFET , 1997, IEEE Electron Device Letters.

[28]  Wei,et al.  Localization and percolation in semiconductor alloys: GaAsN vs GaAsP. , 1996, Physical review. B, Condensed matter.

[29]  Albert,et al.  Determination of the inversion-layer thickness from capacitance measurements of metal-oxide-semiconductor field-effect transistors with ultrathin oxide layers. , 1988, Physical review. B, Condensed matter.

[30]  M. Lundstrom,et al.  Essential physics of carrier transport in nanoscale MOSFETs , 2002 .

[31]  G. Gildenblat,et al.  One-flux theory of a nonabsorbing barrier , 2002 .

[32]  N. Sano,et al.  3D Monte Carlo simulation including full Coulomb interaction under high electron concentration regimes , 2008 .

[33]  C. Hu,et al.  FinFET-a self-aligned double-gate MOSFET scalable to 20 nm , 2000 .

[34]  M. Anantram,et al.  Role of scattering in nanotransistors , 2002, cond-mat/0211069.

[35]  D.A. Antoniadis,et al.  MOSFET Performance Scaling—Part I: Historical Trends , 2008, IEEE Transactions on Electron Devices.

[36]  R. L. Longini,et al.  Alternative Approach to the Solution of Added Carrier Transport Problems in Semiconductors , 1961 .

[37]  P. J. Price Chapter 4 Monte Carlo Calculation of Electron Transport in Solids , 1979 .

[38]  S. Laux,et al.  Comments on "Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures. II. Submicrometer MOSFETs" [with reply] , 1991 .

[39]  M. V. Fischetti,et al.  Monte Carlo simulation of a 30 nm dual-gate MOSFET: how short can Si go? , 1992, 1992 International Technical Digest on Electron Devices Meeting.

[40]  S. Laux,et al.  Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. , 1988, Physical review. B, Condensed matter.

[41]  N. Sano Kinetics of quasiballistic transport in nanoscale semiconductor structures: is the ballistic limit attainable at room temperature? , 2004, Physical review letters.

[42]  A. Khakifirooz,et al.  MOSFET performance scaling: Limitations and future options , 2008, 2008 IEEE International Electron Devices Meeting.

[43]  I. Eisele,et al.  A detailed experimental investigation of impact ionization in n-channel metal–oxide–semiconductor field-effect-transistors at very low drain voltages , 2003 .

[44]  M. Lundstrom On the mobility versus drain current relation for a nanoscale MOSFET , 2001, IEEE Electron Device Letters.

[45]  P. Scott Carney,et al.  Silicon field-effect transistor based on quantum tunneling , 1994 .