B-Spline Approximation with Energy Constraints

This paper addresses the problem of reconstructing a free-form surface from measurement data. While the usual methods subdivide the point cloud and fit individual surfaces to these parts we fit a single integral tensor product B-spline surface to the entire point cloud. Holes in the point set, varying point densities, and free boundaries are handled. An effective algorithm is presented, which calculates a smooth approximation surface to a prescribed error tolerance with the help of energy terms.

[1]  Brian G. Schunck,et al.  A Two-Stage Algorithm for Discontinuity-Preserving Surface Reconstruction , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Michael Gipser,et al.  Numerische Lösung von partiellen Differentialgleichungen der Technik , 1985 .

[3]  Demetri Terzopoulos,et al.  Regularization of Inverse Visual Problems Involving Discontinuities , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Weiyin Ma,et al.  Parameterization of randomly measured points for least squares fitting of B-spline curves and surfaces , 1995, Comput. Aided Des..

[5]  Malcolm I. G. Bloor,et al.  The smoothing properties of variational schemes for surface design , 1995, Comput. Aided Geom. Des..

[6]  Günther Greiner,et al.  Variational Design and Fairing of Spline Surfaces , 1994, Comput. Graph. Forum.

[7]  D. F. Rogers Constrained B-spline curve and surface fitting , 1989 .

[8]  Josef Hoschek,et al.  Optimal approximate conversion of spline surfaces , 1989, Comput. Aided Geom. Des..

[9]  Chia-Hsiang Menq,et al.  Parameter optimization in approximating curves and surfaces to measurement data , 1991, Comput. Aided Geom. Des..

[10]  Andrew P. Witkin,et al.  Variational surface modeling , 1992, SIGGRAPH.

[11]  Tom Rando,et al.  Designing faired surfaces parametric , 2002 .

[12]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[13]  Matthias Eck,et al.  Automatic reconstruction of B-spline surfaces of arbitrary topological type , 1996, SIGGRAPH.

[14]  Hans Hagen,et al.  Automatic smoothing with geometric surface patches , 1987, Comput. Aided Geom. Des..

[15]  Michael J. Pratt,et al.  Smooth parametric surface approximations to discrete data , 1985, Comput. Aided Geom. Des..

[16]  Matthias Eck,et al.  Local Energy Fairing of B-spline Curves , 1993, Geometric Modelling.

[17]  M. Grossman,et al.  Parametric Curve Fitting , 1971, Comput. J..

[18]  Carlo H. Séquin,et al.  Functional optimization for fair surface design , 1992, SIGGRAPH.

[19]  Mounib Mekhilef,et al.  Optimization of a representation , 1993, Comput. Aided Des..

[20]  Josef Hoschek,et al.  3. Approximate Spline Conversion for Integral and Rational Bézier and B-Spline Surfaces , 1992, Geometry Processing for Design and Manufacturing.

[21]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[22]  Gerald E. Farin,et al.  Curves and surfaces for computer-aided geometric design - a practical guide, 4th Edition , 1997, Computer science and scientific computing.

[23]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.