Parameter identification of doubly-fed induction generator by the Levenberg-Marquardt-Fletcher method

This paper presents a parameter identification approach based on the Levenberg-Marquardt-Fletcher (LMF) algorithm to obtain the doubly-fed induction generator (DFIG) parameters in case of incomplete or inaccurate parameters. The DFIG model and the LMF method are introduced at first. The parameter identification process is then described in details. The accuracy of the identified parameters is verified in a simulation case where real parameters are used as the reference values.

[1]  J. MacDowell,et al.  Model Validation for Wind Turbine Generator Models , 2011, IEEE Transactions on Power Systems.

[2]  I. Zubia,et al.  In situ electrical parameter identification method for induction wind generators , 2011 .

[3]  I.A. Hiskens,et al.  Estimating wind turbine parameters and quantifying their effects on dynamic behavior , 2008, 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century.

[4]  P. Kundur,et al.  Power system stability and control , 1994 .

[5]  Zuwei Yu,et al.  A theoretical analysis on parameter estimation for the weibull wind speed distribution , 2008, 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century.

[6]  N.W. Miller,et al.  Dynamic modeling of GE 1.5 and 3.6 MW wind turbine-generators for stability simulations , 2003, 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491).

[7]  Tao Wu,et al.  Wind Farm Equivalent Modeling Based on Eigen Analysis , 2012 .

[8]  M. A. Poller Doubly-fed induction machine models for stability assessment of wind farms , 2003, 2003 IEEE Bologna Power Tech Conference Proceedings,.

[9]  H. Polinder,et al.  General Model for Representing Variable-Speed Wind Turbines in Power System Dynamics Simulations , 2002, IEEE Power Engineering Review.

[10]  A. G. Expósito,et al.  Power system parameter estimation: a survey , 2000 .

[11]  Jonas Sjöberg,et al.  Efficient training of neural nets for nonlinear adaptive filtering using a recursive Levenberg-Marquardt algorithm , 2000, IEEE Trans. Signal Process..

[12]  Janaka Ekanayake,et al.  Dynamic modeling of doubly fed induction generator wind turbines , 2003 .