Fast Singular Value Decay for Lyapunov Solutions with Nonnormal Coefficients

Lyapunov equations with low-rank right-hand sides often have solutions whose singular values decay rapidly, enabling iterative methods that produce low-rank approximate solutions. All previously known bounds on this decay involve quantities that depend quadratically on the departure of the coefficient matrix from normality: these bounds suggest that the larger the departure from normality, the slower the singular values will decay. We show this is only true up to a threshold, beyond which a larger departure from normality can actually correspond to faster decay of singular values: if the singular values decay slowly, the numerical range cannot extend far into the right-half plane.

[1]  P. Benner,et al.  Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: a state of the art survey , 2013 .

[2]  Mark Embree,et al.  Ritz Value Localization for Non-Hermitian Matrices , 2012, SIAM J. Matrix Anal. Appl..

[3]  John Sabino,et al.  Solution of Large-Scale Lyapunov Equations via the Block Modified Smith Methods , 2006 .

[4]  Karl Meerbergen,et al.  Lyapunov Inverse Iteration for Identifying Hopf Bifurcations in Models of Incompressible Flow , 2012, SIAM J. Sci. Comput..

[5]  Ren-Cang Li,et al.  Analysis of the solution of the Sylvester equation using low-rank ADI with exact shifts , 2010, Syst. Control. Lett..

[6]  Thilo Penzl,et al.  A Cyclic Low-Rank Smith Method for Large Sparse Lyapunov Equations , 1998, SIAM J. Sci. Comput..

[7]  L. Elsner,et al.  On measures of nonnormality of matrices , 1987 .

[8]  Anne E. Trefethen,et al.  Hydrodynamic Stability Without Eigenvalues , 1993, Science.

[9]  Ninoslav Truhar,et al.  Bounds on the trace of a solution to the Lyapunov equation with a general stable matrix , 2007, Syst. Control. Lett..

[10]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[11]  Wai-Chuen Gan Robust and optimal control of AC machines , 2001 .

[12]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[13]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[14]  Y. Zhou,et al.  On the decay rate of Hankel singular values and related issues , 2002, Syst. Control. Lett..

[15]  Eugene L. Wachspress,et al.  New ADI Model Problem Applications , 1986, FJCC.

[16]  Daniel Kressner,et al.  On the eigenvalue decay of solutions to operator Lyapunov equations , 2014, Syst. Control. Lett..

[17]  Michel Crouzeix,et al.  Numerical range and functional calculus in Hilbert space , 2007 .

[18]  Marvin Marcus,et al.  The numerical range of certain 0,1-matrices † , 1979 .

[19]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[20]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[21]  Thilo Penzl Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric case , 2000 .

[22]  G. W. Stewart,et al.  On the eigensystems of graded matrices , 2001, Numerische Mathematik.

[23]  Valeria Simoncini,et al.  Analysis of the Rational Krylov Subspace and ADI Methods for Solving the Lyapunov Equation , 2011, SIAM J. Numer. Anal..

[24]  Bernhard Beckermann,et al.  An Error Analysis for Rational Galerkin Projection Applied to the Sylvester Equation , 2011, SIAM J. Numer. Anal..

[25]  Valeria Simoncini,et al.  Computational Methods for Linear Matrix Equations , 2016, SIAM Rev..