A surface‐electrochemical basis for the direct logarithmic growth law for initial stages of extension of anodic oxide films formed at noble metals

Measurements on anodic surface oxidation of noble metals as a function of time and electrode potential show that the initial extension and subsequent thickening of such oxide films is directly logarithmic in time. A striking feature of this behavior is that the direct logarithmic extension law already applies to increase of coverage of Pt or Au electrodes with time well below the limit of formation of one monolayer of OH or O species on the metal surface. A direct logarithmic law of oxide film growth also applies to post‐monolayer growth involving early stages of quasi‐three‐dimensional film formation. Eventually, as the oxide film thickens, the Mott–Cabrera ‘‘high‐field’’ growth mechanism can apply. However, below the monolayer level of oxide film formation, electrochemisorption of two‐dimensional (2D) structures of OH or O arises so that the Mott–Cabrera mechanism cannot be applicable to that situation. It is shown that the kinetic relation for direct electrodeposition of OH or O species onto available ...

[1]  H. Angerstein-Kozlowska,et al.  Elementary steps of electrochemical oxidation of single-crystal planes of Au Part II. A chemical and structural basis of oxidation of the (111) plane , 1987 .

[2]  V. A. Gromyko,et al.  Kinetics and mechanism of the formation and reduction of oxide layers on platinum part I. Oxidation and reduction of platinum electrodes , 1984 .

[3]  A. Damjanović,et al.  Formation of Oxide Films at Platinum Anodes in Alkaline Solutions II . Temperature Study , 1980 .

[4]  A. Damjanović,et al.  Oxide Growth at Platinum Anodes with Emphasis on the pH Dependence of Growth , 1979 .

[5]  B. Conway,et al.  Evaluation of rate constants and reversibility parameters for surface reactions by the potential-sweep method , 1979 .

[6]  D. Gilroy Oxide growth at platinum electrodes in H2SO4 at potentials below 1.7 V , 1976 .

[7]  L. B. Harris,et al.  Initial Anodic Growth of Oxide Film on Platinum in 2N H 2 SO 4 under Galvanostatic, Potentiostatic, and Potentiodynamic Conditions: The Question of Mechanism , 1975 .

[8]  H. Angerstein-Kozlowska,et al.  Surface oxidation and H deposition at ruthenium electrodes: Resolution of component processes in potential-sweep experiments , 1975 .

[9]  A. Damjanović,et al.  Growth of Oxide Films at Pt Anodes at Constant Current, Density in H 2 SO 4 , 1975 .

[10]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[11]  M. J. Weaver The electrochemical formation and removal of thin oxide films on noble metals: Survey of some recent work—Evidence for a model involving high-field ion transport , 1974 .

[12]  E. E. Criddle,et al.  Ultrapurification of water for electrochemical and surface chemical work by catalytic pyrodistillation , 1973 .

[13]  B. Chattopadhyay Thin film oxidation and the logarithmic rate law , 1973 .

[14]  H. Angerstein-Kozlowska,et al.  The real condition of electrochemically oxidized platinum surfaces , 1973 .

[15]  D. Brown Book reviewMTP international review of science: (Inorganic Chemistry Series One). Consultant Editor - H. J. EMELÉUS, FRS Butterworths, London 1972; £10 per volume + £5 for index volume, or £95 for set of 10 volumes + Index Volume , 1973 .

[16]  R. Ghez On the Mott‐Cabrera oxidation rate equation and the inverse‐logarithmic law , 1973 .

[17]  D. Young,et al.  “Logarithmic” kinetics in thin film tarnishing , 1972 .

[18]  H. Uhlig,et al.  The Initial Oxidation Rates of Single‐Crystal Copper and the Effect of Gaseous Pretreatment , 1971 .

[19]  G. Horányi,et al.  Investigation of adsorption phenomena on platinized platinum electrodes by tracer methods: II. The potential dependence of anion adsorption , 1971 .

[20]  J. Schultze,et al.  Kinetik der elektrochemischen Bildung und Reduktion von monomolekularen Oxidschichten auf Gold , 1971 .

[21]  I. M. Rihie Logarithmic kinetics and surface controlled metal oxidation reactions , 1970 .

[22]  M. Dignam,et al.  Anodic oxidation of copper in alkaline solution , 1970 .

[23]  A. T. Fromhold Analysis of the Uhlig Defect Model of Oxidation Kinetics , 1968 .

[24]  J. Bockris,et al.  Ellipsometric Study of Oxygen‐Containing Films on Platinum Anodes , 1968 .

[25]  F. Tompkins,et al.  Chemisorption and incorporation of oxygen at a nickel surface , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[26]  A. C. Makrides Electrochemistry of Surface Oxides , 1966 .

[27]  H. Uhlig,et al.  Logarithmic Oxidation Kinetics of Zinc , 1965 .

[28]  N. Sato,et al.  Kinetics of the Aging of Anodic Oxide Film on Iron , 1964 .

[29]  A. T. Fromhold Uhlig Model of Oxidation Kinetics , 1963, Nature.

[30]  M. Breiter Anodic oxidation of formic acid on platinum—II. Interpretation of potentiostatic current/potential curves. Reaction mechanism in perchloric acid solutions☆ , 1963 .

[31]  L. Young,et al.  Anodic Oxide Films , 1962 .

[32]  M. Breiter,et al.  Untersuchung des anodischen aufbaus und der kathodischen reduktion der sauerstoffbelegung am rhodium und iridium , 1961 .

[33]  H. Uhlig,et al.  Initial oxidation rate of nickel and effect of the curie temperature , 1959 .

[34]  Alan F. Gibson,et al.  Progress in Semiconductors , 1958 .

[35]  H. Uhlig Initial oxidation rate of metals and the logarithmic equation , 1956 .

[36]  P. Landsberg On the Logarithmic Rate Law in Chemisorption and Oxidation , 1955 .

[37]  B. Trapnell,et al.  The interaction of oxygen with clean metal surfaces , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[38]  A. R. Miller The variation of the dipole moment of adsorbed particles with the fraction of the surface covered , 1946, Mathematical Proceedings of the Cambridge Philosophical Society.

[39]  G. Tammann,et al.  Metallographische Mitteilungen aus dem Institut für physikalische Chemie der Universität Göttingen. CV. Die Geschwindigkeit der Einwirkung von Sauerstoff, Schwefelwasserstoff und Halogenen auf Metalle , 1922 .

[40]  B. Conway,et al.  Electrochemical surface science: The study of monolayers of ad-atoms and solvent molecules at charged metal interfaces , 1984 .

[41]  J. Schultze,et al.  The kinetics of the electrochemical formation and reduction of monomolecular oxide layers on platinum in 0.5 M H2SO4: Part II. Galvanostatic pulse measurements and the model of oxide growth* , 1972 .

[42]  J. L. Ord,et al.  The Anodic Oxidation of Platinum: Evidence for a High‐Field Ionic Conduction Mechanism , 1971 .

[43]  B. Conway,et al.  Kinetic theory of pseudo-capacitance and electrode reactions at appreciable surface coverage , 1962 .

[44]  J. T. Law The interaction of oxygen with clean silicon surfaces , 1958 .

[45]  N. Cabrera,et al.  Theory of the oxidation of metals , 1949 .

[46]  N. Mott The theory of the formation of protective oxide films on metals.—III , 1947 .