Computation of the 3-D Unsteady Flow Past Deforming Geometries

A 3-D incompressible unsteady flow solver based on simple finite elements with adaptive remeshing and grid movement for both moving and deforming surfaces is described. We demonstrate the combination of adaptive remeshing techniques with the incompressible flow solver with the computation of flow past an eel in 2-D and a blue-fin tuna in 3-D. The flow past a swimming tuna was computed for two extreme cases of the caudal fin frequency and swimming speed. A grid refinement study was performed and a grid converged solution for the force produced by the caudal fin was obtained.