What is the market potential of electric vehicles as commercial passenger cars? A case study from Germany

Commercial passenger cars are often discussed as an early market segment for plug-in electric vehicles (EVs). Compared to private vehicles, the commercial vehicle segment is characterized by higher vehicle kilometers travelled and a higher share of vehicle sales in Germany. Studies which consider commercial passenger EVs less important than private ones often use driving data with an observation period of only one day. Here, we calculate the market potential of EVs for the German commercial passenger car sector by determining the technical and economic potential in 2020 for multiday driving profiles to be operated as EV.We find that commercial vehicles are better suited for EVs than private ones because of the regularity of their driving. About 87% of analysed vehicles could technically be operated as battery electric vehicles (BEVs) while plug-in hybrid electric vehicles (PHEVs) could obtain an electric driving share of 60% on average. In moderate energy price scenarios EVs can reach a market share of 4% in the German commercial passenger car market by 2020 while especially the large commercial branches are important. However, our analysis shows a high sensitivity of results to energy and battery prices as well as electric consumptions.

[1]  Shigeru Shinomoto,et al.  Kernel bandwidth optimization in spike rate estimation , 2009, Journal of Computational Neuroscience.

[2]  Aie,et al.  World Energy Outlook 2013 , 2013 .

[3]  Stefan Trommer,et al.  The new car market for electric vehicles and the potential for fuel substitution , 2014 .

[4]  N. E. Ligterink,et al.  Update analysis of real-world fuel consumption of business passenger cars based on Travelcard Nederland fuelpass data , 2014 .

[5]  Patrick Plötz,et al.  What is the future of public charging infrastructure for electric vehicles ? – A techno-economic assessment of public charging points for Germany , 2013 .

[6]  Martin Treiber,et al.  Verkehrsdynamik und -simulation - Daten, Modelle und Anwendungen der Verkehrsflussdynamik , 2010 .

[7]  Patrick Jochem,et al.  When will electric vehicles capture the German market? And why? , 2013, 2013 World Electric Vehicle Symposium and Exhibition (EVS27).

[8]  Thomas H. Bradley,et al.  Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies , 2013 .

[9]  C. Fiorio Confidence Intervals for Kernel Density Estimation , 2004 .

[10]  Miguel A. Figliozzi,et al.  The Seventh International Conference on City Logistics Conventional vs electric commercial vehicle fleets : A case study of economic and technological factors affecting the competitiveness of electric commercial vehicles in the USA , 2012 .

[11]  C. Thiel,et al.  Cost and CO2 Aspects of Future Vehicle Options in Europe under New Energy Policy Scenarios , 2010 .

[12]  Patrick Jochem,et al.  The potential of carbon dioxide emission reductions in German commercial transport by electric vehicles , 2014, International Journal of Environmental Science and Technology.

[13]  P. Haan,et al.  How much do incentives affect car purchase? Agent-based microsimulation of consumer choice of new cars—Part I: Model structure, simulation of bounded rationality, and model validation , 2009 .

[14]  Horst E. Friedrich,et al.  Modelling customer choice and market development for future automotive powertrain technologies , 2013, 2013 World Electric Vehicle Symposium and Exhibition (EVS27).

[15]  Wolf Fichtner,et al.  Feasbility of Battery Switch Stations for Local Emission Free Public Transport , 2012 .

[16]  MARKET EVOLUTION SCENARIOS FOR ELECTRIC VEHICLES , 2014 .

[17]  Martin Wietschel,et al.  Modelling market diffusion of electric vehicles with real world driving data — Part I: Model structure and validation , 2014 .

[18]  Daniel Sperling,et al.  Fleet purchase behavior: decision processes and implications for new vehicle technologies and fuels , 2001 .

[19]  S. K. Ribeiro Transport and its infrastructure , 2007 .

[20]  W. Fichtner,et al.  Alternative Antriebskonzepte bei sich wandelnden Mobilitätsstilen. Tagungsbeiträge vom 08.und 09.März 2012 am KIT, Karlsruhe , 2013 .

[21]  Simon Funke,et al.  A Comparison of Different Means to Increase Daily Range of Electric Vehicles: The Potential of Battery Sizing, Increased Vehicle Efficiency and Charging Infrastructure , 2014, 2014 IEEE Vehicle Power and Propulsion Conference (VPPC).

[22]  Christian Rammer,et al.  Die Bedeutung der Automobilindustrie für die deutsche Volkswirtschaft im europäischen Kontext: Endbericht an das Bundesministerium für Wirtschaft und Technologie , 2009 .

[23]  I Steinmeyer Definition und Bedeutung des Personenwirtschaftsverkehrs. Ein Sachstandsbericht aus dem Jahr 2006 , 2007 .

[24]  Mark R Berg,et al.  THE POTENTIAL MARKET FOR ELECTRIC VEHICLES: RESULTS FROM A NATIONAL SURVEY OF COMMERCIAL FLEET OPERATORS , 1985 .

[25]  Patrícia Baptista,et al.  Comparing the Use of Small Sized Electric Vehicles with Diesel Vans on City Logistics , 2014 .

[26]  Jeremy Neubauer,et al.  Sensitivity of battery electric vehicle economics to drive patterns, vehicle range, and charge strategies , 2012 .

[27]  William Sierzchula,et al.  Factors influencing fleet manager adoption of electric vehicles , 2014 .

[28]  Pitu B. Mirchandani,et al.  New Logistical Issues in Using Electric Vehicle Fleets with Battery Exchange Infrastructure , 2014 .

[29]  C. Rehtanz,et al.  Impact of controlled charging of an electrical vehicle fleet on business efficiency , 2014, 2014 49th International Universities Power Engineering Conference (UPEC).

[30]  Jeremy Neubauer,et al.  Thru-life impacts of driver aggression, climate, cabin thermal management, and battery thermal management on battery electric vehicle utility , 2014 .

[31]  Margaret J. Eppstein,et al.  An agent-based model to study market penetration of plug-in hybrid electric vehicles , 2011 .

[32]  Martin Wietschel,et al.  Elektromobilität im Personenwirtschaftsverkehr: Eine Potenzialanalyse , 2012 .

[33]  M. Laroche,et al.  Targeting consumers who are willing to pay more for environmentally friendly products , 2001 .

[34]  Benjamin Schott,et al.  Netzintegration von Fahrzeugen mit elektrifizierten Antriebssystemen in bestehende und zukünftige Energieversorgungsstrukturen (NET-ELAN): Endbericht , 2012 .

[35]  P. Plötz,et al.  Who will buy electric vehicles? Identifying early adopters in Germany , 2014 .

[36]  Kazuya Kawamura,et al.  Modeling urban commercial vehicle daily tour chaining , 2012 .

[37]  M. Figliozzi,et al.  Impacts of Economic, Technological and Operational Factors on the Economic Competitiveness of Electric Commercial Vehicles in Fleet Replacement Decisions , 2012 .

[38]  Miguel A. Figliozzi,et al.  An economic and technological analysis of the key factors affecting the competitiveness of electric commercial vehicles: A case study from the USA market , 2013 .

[39]  Mark Bradley,et al.  Commercial fleet demand for alternative-fuel vehicles in California , 1996 .

[40]  Verena Dexheimer Hedonic Methods of Price Measurement for Used Cars , 2003 .

[41]  H. Helms,et al.  Electric vehicle and plug-in hybrid energy efficiency and life cycle emissions , 2010 .

[42]  Peter Mock,et al.  From laboratory to road: A comparison of official and real-world fuel consumption and CO2 values for cars in Europe and the United States , 2013 .

[43]  Peter Mock,et al.  Entwicklung eines Szenariomodells zur Simulation der zukünftigen Marktanteile und CO2-Emissionen von Kraftfahrzeugen (VECTOR21) , 2010 .

[44]  Danilo J. Santini,et al.  Cost analysis of Plug-in Hybrid Electric Vehicles including Maintenance & Repair Costs and Resale Values , 2012 .

[45]  Roland W. Scholz,et al.  How much do incentives affect car purchase? Agent-based microsimulation of consumer choice of new cars—Part II: Forecasting effects of feebates based on energy-efficiency , 2009 .

[46]  Fabian Schühle Die Marktdurchdringung der Elektromobilität in Deutschland: Eine Akzeptanz- und Absatzprognose , 2014 .

[47]  A. Thielmann,et al.  Technologie-Roadmap Energiespeicher für die Elektromobilität 2030 , 2012 .

[48]  Uwe Clausen,et al.  Entwicklung eines Konzepts zur Innenstadtbelieferung mittels Elektromobilität , 2012 .

[49]  Zhenhong Lin,et al.  PHEV Energy Use Estimation: Validating the Gamma Distribution for Representing the Random Daily Driving Distance , 2012 .

[50]  Martin Wietschel,et al.  Market potential for electric vehicles in the German commercial passenger transport sector , 2013, 2013 World Electric Vehicle Symposium and Exhibition (EVS27).

[51]  Patrick Plötz,et al.  How to estimate the probability of rare long-distance trips , 2014 .