Photochemical and photoelectrochemical reduction of CO2.

The recent literature on photochemical and photoelectrochemical reductions of CO(2) is reviewed. The different methods of achieving light absorption, electron-hole separation, and electrochemical reduction of CO(2) are considered. Energy gap matching for reduction of CO(2) to different products, including CO, formic acid, and methanol, is used to identify the most promising systems. Different approaches to lowering overpotentials and achieving high chemical selectivities by employing catalysts are described and compared.

[1]  E. Fujita,et al.  Reduction of cobalt and iron corroles and catalyzed reduction of CO2 , 2002 .

[2]  Jay Agarwal,et al.  Reduction of CO2 on a tricarbonyl rhenium(I) complex: modeling a catalytic cycle. , 2011, The journal of physical chemistry. A.

[3]  P. Pickup,et al.  Nitrogen-rich polymers for the electrocatalytic reduction of CO2 , 2010 .

[4]  Koji Tanaka,et al.  Electrochemical CO2 reduction catalyzed by ruthenium complexes [Ru(bpy)2(CO)2]2+ and [Ru(bpy)2(CO)Cl]+. Effect of pH on the formation of CO and HCOO- , 1987 .

[5]  Y. Wada,et al.  Phenazine-Photosensitized Reduction of CO2 Mediated by a Cobalt-Cyclam Complex through Electron and Hydrogen Transfer , 1995 .

[6]  A. Deronzier,et al.  Electrocatalytic Reduction of Carbon Dioxide with Mono(bipyridine)carbonylruthenium Complexes in Solution or as Polymeric Thin Films , 1994 .

[7]  Andrew B. Bocarsly,et al.  Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. , 2008, Journal of the American Chemical Society.

[8]  E. Fujita,et al.  Toward more efficient photochemical CO2 reduction: Use of scCO2 or photogenerated hydrides , 2010 .

[9]  A. L. Harris,et al.  Semiconductors for Photoelectrolysis , 1978 .

[10]  Electrocatalytic reduction of CO2 to worthier compounds on a functional dual-film electrode with a solar cell as the energy source , 1998 .

[11]  Kaname Ito,et al.  Photoelectrochemical Reduction of Carbon Dioxide at Metal-Coated p-InP Photocathodes , 1989 .

[12]  C. Kubiak,et al.  Design of a High Throughput 25‐Well Parallel Electrolyzer for the Accelerated Discovery of CO2 Reduction Catalysts via a Combinatorial Approach , 2011 .

[13]  Allen J. Bard,et al.  Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen , 1995 .

[14]  A. Heller,et al.  Silicon photocathode behavior in acidic V(II)-V(III) solutions , 1981 .

[15]  A. Deronzier,et al.  Electroreduction of CO2 catalyzed by polymeric [Ru(bpy)(CO)2]n films in aqueous media: Parameters influencing the reaction selectivity , 1998 .

[16]  C. Kubiak,et al.  Photoreduction of carbon dioxide to its radical anion by nickel cluster [Ni3(.mu.3-I)2(dppm)3]: formation of two carbon-carbon bonds via addition of carbon dioxide radical anion to cyclohexene , 1993 .

[17]  K. Ohta,et al.  Photoelectrocatalytic reduction of CO2 in LiOH/methanol at metal-modified p-InP electrodes , 2006 .

[18]  Isao Taniguchi,et al.  Photoelectrochemical reduction of carbon dioxide using polyaniline-coated silicon , 1983 .

[19]  Kaname Ito,et al.  Influence of Surface Treatment of the p-GaP Photocathode on the Photoelectrochemical Reduction of Carbon Dioxide. , 1993 .

[20]  Makoto Yoshida,et al.  Photoelectrochemical reduction products of carbon dioxide at metal coated p-GaP photocathodes in non-aqueous electrolytes , 1989 .

[21]  N. Lewis,et al.  Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes , 1982 .

[22]  B. Brunschwig,et al.  Reduction of Cobalt and Iron Phthalocyanines and the Role of the Reduced Species in Catalyzed Photoreduction of CO2 , 2000 .

[23]  Amit Kumar,et al.  The electrical properties of semiconductor/metal, semiconductor/liquid, and semiconductor/conducting polymer contacts , 1993 .

[24]  K. Hara,et al.  High Efficiency Electrochemical Reduction of Carbon Dioxide under High Pressure on a Gas Diffusion Electrode Containing Pt Catalysts , 1995 .

[25]  K. Ohta,et al.  Photoelectrochemical reduction of carbon dioxide at p-type gallium arsenide and p-type indium phosphide electrodes in methanol , 2006 .

[26]  J. Sauvage,et al.  Electrocatalytic reduction of carbon dioxide by nickel cyclam2+ in water: study of the factors affecting the efficiency and the selectivity of the process. , 1986, Journal of the American Chemical Society.

[27]  A. Deronzier,et al.  Formation of Polymeric [{Ru0(bpy)(CO)2}n] Films by Electrochemical Reduction of [Ru(bpy)2(CO)2](PF6)2: Its Implication in CO2 Electrocatalytic Reduction , 1994 .

[28]  K. Hara,et al.  Electrochemical reduction of high pressure CO2 at Pb, Hg and In electrodes in an aqueous KHCO3 solution , 1995 .

[29]  S. Cosnier,et al.  Electrocatalytic reduction of CO2 on electrodes modified by fac-Re(2,2'-bipyridine)(CO)3Cl complexes bonded to polypyrrole films , 1988 .

[30]  J. Augustynski,et al.  Poisoning and Activation of the Gold Cathode during Electroreduction of CO[sub 2] , 1994 .

[31]  M. Halmann,et al.  Photoelectrochemical reduction of carbon dioxide to formic acid, formaldehyde and methanol on p-gallium arsenide in an aqueous V(II)-V(III) chloride redox system , 1983 .

[32]  K. W. Frese,et al.  Reduction of CO 2 on n ‐ GaAs Electrodes and Selective Methanol Synthesis , 1984 .

[33]  D. Dubois,et al.  Electrochemical reduction of CO2 catalyzed by [Pd(triphosphine)(solvent)](BF4)2 complexes : synthetic and mechanistic studies , 1991 .

[34]  F. Paolucci,et al.  Efficiency enhancement of the electrocatalytic reduction of CO2: fac-[Re(v-bpy)(CO)3Cl] electropolymerized onto mesoporous TiO2 electrodes , 2006 .

[35]  Hideo Tamura,et al.  Photoelectrochemical Reduction of Carbon Dioxide at p-Type Gallium Phosphide Electrodes in the Presence of Crown Ether , 1982 .

[36]  Anne C. Co,et al.  A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper , 2006 .

[37]  Shuichi Nonomura,et al.  Efficient Solar Water Splitting with a Composite “n-Si/p-CuI/n-i-p a-Si/n-p GaP/RuO2” Semiconductor Electrode , 2009 .

[38]  Javier J. Concepcion,et al.  Single-site, catalytic water oxidation on oxide surfaces. , 2009, Journal of the American Chemical Society.

[39]  Bobak Gholamkhass,et al.  Architecture of supramolecular metal complexes for photocatalytic CO2 reduction: ruthenium-rhenium bi- and tetranuclear complexes. , 2005, Inorganic chemistry.

[40]  Bruce A. Parkinson,et al.  Photoelectrochemical pumping of enzymatic CO2 reduction , 1984, Nature.

[41]  Akira Fujishima,et al.  PHOTOELECTROCHEMICAL REDUCTION OF CO2 IN A HIGH-PRESSURE CO2 + METHANOL MEDIUM AT P-TYPE SEMICONDUCTOR ELECTRODES , 1998 .

[42]  B. Aurian‐Blajeni,et al.  The study of adsorbed species during the photoassisted reduction of carbon dioxide at a p-CdTe electrode , 1983 .

[43]  Isao Taniguchi,et al.  The reduction of carbon dioxide at illuminated p-type semiconductor electrodes in nonaqueous media , 1984 .

[44]  M. Kaneko,et al.  Reduction catalysis by metal complexes confined in a polymer matrix , 2003 .

[45]  J. Savéant,et al.  Potential-sweep chronoamperometry theory of kinetic currents in the case of a first order chemical reaction preceding the electron-transfer process , 1963 .

[46]  Kaname Ito,et al.  Photoelectrochemical reduction products of carbon dioxide at metal coated p-GaP photocathodes in aqueous electrolytes. , 1985 .

[47]  B. Aurian‐Blajeni,et al.  The mediation of the photoelectrochemical reduction of carbon dioxide by ammonium ions , 1984 .

[48]  Frano Barbir,et al.  A method for optimal sizing of an electrolyzer directly connected to a PV module , 2011 .

[49]  A. Gennaro,et al.  Solubility and electrochemical determination of CO2 in some dipolar aprotic solvents , 1990 .

[50]  T. Meyer,et al.  Photochemistry of tris(2,2'-bipyridine)ruthenium(2+) ion , 1982 .

[51]  A. Fujishima,et al.  Recent developments in electrochemical and photoelectrochemical CO2 reduction: involvement of the (CO2)2. − dimer radical anion , 2001 .

[52]  Nathan S Lewis,et al.  Chemical control of charge transfer and recombination at semiconductor photoelectrode surfaces. , 2005, Inorganic chemistry.

[53]  Richard L. Kurtz,et al.  Electrochemical Reduction of CO2 to CH3OH at Copper Oxide Surfaces , 2011 .

[54]  M. Kaneko,et al.  Electrocatalytic reduction of CO2 in water by [Re(bpy)(CO)3Br] and [Re(terpy)(CO)3Br] complexes incorporated into coated nafion membrane (bpy = 2,2′-bipyridine; terpy = 2,2′;6′,2″-terpyridine) , 1993 .

[55]  C. Kubiak,et al.  Photoreduction of CO2 on p-type Silicon Using Re(bipy-But)(CO)3Cl: Photovoltages Exceeding 600 mV for the Selective Reduction of CO2 to CO , 2010 .

[56]  R. Ziessel Molecular tailoring of organometallic polymers for efficient catalytic CO2 reduction: mode of formation of the active species , 1998 .

[57]  E. Fujita,et al.  Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. , 2009, Accounts of chemical research.

[58]  Hiroyuki Takeda,et al.  Development of efficient photocatalytic systems for CO2 reduction using mononuclear and multinuclear metal complexes based on mechanistic studies , 2010 .

[59]  K. Isobe,et al.  Remarkable decrease in overpotential of oxalate formation in electrochemical CO2 reduction by a metal–sulfide cluster , 1995 .

[60]  C. Kubiak,et al.  Electrocatalytic Reduction of Carbon Dioxide by the Binuclear Copper Complex [Cu2(6-(diphenylphosphino-2,2'-bipyridyl)2(MeCN)2][PF6]2 , 1994 .

[61]  Clifford P. Kubiak,et al.  Electrocatalytic and Homogeneous Approaches to Conversion of CO2 to Liquid Fuels , 2009 .

[62]  Héctor D. Abruña,et al.  Electrocatalysis of CO2 reduction at surface modified metallic and semiconducting electrodes , 1986 .

[63]  C. Creutz,et al.  Hydricities of d(6) metal hydride complexes in water. , 2009, Journal of the American Chemical Society.

[64]  Kaname Ito,et al.  Influence of light intensity on photoelectroreduction of CO2 at a p-GaP photocathode. , 1990 .

[65]  M. Wrighton,et al.  Surface Functionalization of Electrodes with Molecular Reagents , 1986, Science.

[66]  Anders Hagfeldt,et al.  Theoretical Models for the Action Spectrum and the Current-Voltage Characteristics of Microporous Semiconductor Films in Photoelectrochemical Cells , 1994 .

[67]  K. Ohta,et al.  Photoelectrochemical reduction of CO2 at p-InP electrode in copper particle-suspended methanol , 2009 .

[68]  A. Heller,et al.  An efficient photocathode for semiconductor liquid junction cells: 9.4% solar conversion efficiency with p-InP/VCl3-VCl2-HCl/C , 1980 .

[69]  Kazuhito Hashimoto,et al.  Photoelectrochemical reduction of highly concentrated CO2 in methanol solution , 1998 .

[70]  D. Dubois,et al.  Hydricities of BzNADH, CH5Mo(PMe3)(CO)2H, and C5Me5Mo(PMe3)(CO)2H in acetonitrile. , 2004, Journal of the American Chemical Society.

[71]  N. Lewis,et al.  Catalytic reduction of carbon dioxide at carbon electrodes modified with cobalt phthalocyanine , 1984 .

[72]  J. Lehn,et al.  Efficient photochemical reduction of CO2 to CO by visible light irradiation of systems containing Re(bipy)(CO)3X or Ru(bipy)32+–Co2+ combinations as homogeneous catalysts , 1983 .

[73]  Yoshio Hori,et al.  Electrochemical Reduction of Carbon Dioxide at a Platinum Electrode in Acetonitrile‐Water Mixtures , 2000 .

[74]  A. Tinnemans,et al.  Tetraaza‐macrocyclic cobalt(II) and nickel(II) complexes as electron‐transfer agents in the photo(electro)chemical and electrochemical reduction of carbon dioxide , 2010 .

[75]  Nelson A. Kelly,et al.  Predicting efficiency of solar powered hydrogen generation using photovoltaic-electrolysis devices , 2010 .

[76]  W. Leitner The coordination chemistry of carbon dioxide and its relevance for catalysis: a critical survey , 1996 .

[77]  M. Bradley,et al.  Electrocatalytic reduction of carbon dioxide at illuminated p-type silicon semiconduccting electrodes , 1983 .

[78]  J. Lehn,et al.  Photochemical and Electrochemical Reduction of Carbon Dioxide to Carbon Monoxide Mediated by (2,2′‐Bipyridine)tricarbonylchlororhenium(I) and Related Complexes as Homogeneous Catalysts. , 1987 .

[79]  B. Aurian‐Blajeni,et al.  Electrochemical measurement on the photoelectrochemical reduction of aqueous carbon dioxide on p-Gallium phosphide and p-Gallium arsenide semiconductor electrodes , 1983 .

[80]  Eiji Suzuki,et al.  One chip photovoltaic water electrolysis device , 2003 .

[81]  John Newman,et al.  Design of an Electrochemical Cell Making Syngas ( CO + H2 ) from CO2 and H2O Reduction at Room Temperature , 2007 .

[82]  D. Lowy,et al.  Electrochemical reduction of carbon dioxide on flat metallic cathodes , 1997 .

[83]  A. Bard,et al.  Semiconductor electrodes. 24. Behavior and photoelectrochemical cells based on p-type GaAs in aqueous solutions , 1980 .

[84]  Toshio Tsukamoto,et al.  Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media , 1994 .

[85]  J. Lehn,et al.  Photochemical reduction of carbon dioxide to formate catalyzed by 2,2t́-bipyridine- or 1,10-phenanthroline-ruthenium(II) complexes , 1990 .

[86]  Hiroyuki Takeda,et al.  Development of an efficient photocatalytic system for CO2 reduction using rhenium(I) complexes based on mechanistic studies. , 2008, Journal of the American Chemical Society.

[87]  Robert C. Snoeberger,et al.  Covalent attachment of a rhenium bipyridyl CO2 reduction catalyst to Rutile TiO2. , 2011, Journal of the American Chemical Society.

[88]  Andrew A. Peterson,et al.  How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels , 2010 .

[89]  Y. Nakato,et al.  An Approach to Ideal Semiconductor Electrodes for Efficient Photoelectrochemical Reduction of Carbon Dioxide by Modification with Small Metal Particles , 1998 .

[90]  F. Armstrong,et al.  Rapid and efficient electrocatalytic CO2/CO interconversions by Carboxydothermus hydrogenoformans CO dehydrogenase I on an electrode. , 2007, Journal of the American Chemical Society.

[91]  X. Bu,et al.  A new nickel(II) cyclam (cyclam = 1,4,8,11-tetraazacyclotetradecane) complex covalently attached to tris(1,10-phenanthroline)ruthenium(2+). A new candidate for the catalytic photoreduction of carbon dioxide , 1992 .

[92]  Y. Nakato,et al.  Modification of semiconductor surface with ultrafine metal particles for efficient photoelectrochemical reduction of carbon dioxide , 1997 .

[93]  T. Terada,et al.  Photochemical carbon dioxide reduction catalyzed by bis(2,2'-bipyridine)dicarbonylruthenium(2+) using triethanolamine and 1-benzyl-1,4-dihydronicotinamide as an electron donor , 1990 .

[94]  J. Petit,et al.  Molecular catalysts in photoelectrochemical cells , 1989 .

[95]  J. Sauvage,et al.  Electrochemical Reduction of Carbon Dioxide - Mediated by Molecular Catalysts , 1989 .

[96]  T. Kajino,et al.  Visible-light-induced selective CO2 reduction utilizing a ruthenium complex electrocatalyst linked to a p-type nitrogen-doped Ta2O5 semiconductor. , 2010, Angewandte Chemie.

[97]  M. Bradley,et al.  p-Type silicon based photoelectrochemical cells for optical energy conversion: Electrochemistry of tetra-azomacrocyclic metal complexes at illuminated , 1982 .

[98]  G. Nagasubramanian,et al.  Semiconductor Electrodes XLIX . Evidence for Fermi Level Pinning and Surface‐State Distributions from Impedance Measurements in Acetonitrile Solutions with Various Redox Couples , 1983 .

[99]  Xiao-Qing Zhu,et al.  Thermodynamic diagnosis of the properties and mechanism of dihydropyridine-type compounds as hydride source in acetonitrile with "Molecule ID Card". , 2010, The journal of physical chemistry. B.

[100]  Christian Amatore,et al.  Mechanism and kinetic characteristics of the electrochemical reduction of carbon dioxide in media of low proton availability , 1981 .

[101]  B. Aurian‐Blajeni,et al.  Photo-aided reduction of carbon dioxide to carbon monoxide , 1983 .

[102]  J. Petit,et al.  Photoassisted electro-reduction of CO2 on p-GaAs in the presence of Ni cyclam2+ , 1986 .

[103]  S. Morrison,et al.  Carbon dioxide reduction on gallium arsenide electrodes , 1985 .

[104]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[105]  A. Fujishima,et al.  Photoelectrochemical Reduction of CO 2 at High Current Densities at p‐InP Electrodes , 1998 .

[106]  M. D. Rooij,et al.  Electrochemical Methods: Fundamentals and Applications , 2003 .

[107]  Mikkel Jørgensen,et al.  The teraton challenge. A review of fixation and transformation of carbon dioxide , 2010 .

[108]  O. Ishitani,et al.  Efficient photocatalytic CO2 reduction using [Re(bpy) (CO)3{P(OEt)3}]+ , 1996 .

[109]  Isao Taniguchi,et al.  Electrochemical and Photoelectrochemical Reduction of Carbon Dioxide , 1989 .

[110]  John A. Turner,et al.  High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production , 2001 .

[111]  B. Aurian‐Blajeni,et al.  Photochemical solar collector for the photoassisted reduction of aqueous carbon dioxide , 1983 .

[112]  H. Abruña,et al.  Electrocatalysis of CO2 Reduction in Aqueous Media at Electrodes Modified with Electropolymerized Films of Vinylterpyridine Complexes of Transition Metals , 1995 .

[113]  Ichiro Yoshida,et al.  Electrocatalytic reduction of carbon dioxide to methanol—VI. Use of a solar cell and comparison with that of carbon monoxide , 1987 .

[114]  J. Bockris,et al.  The Photoelectrocatalytic Reduction of Carbon Dioxide , 1989 .

[115]  Y. Nakato,et al.  Photoelectrochemical reduction of CO2 at a metal-particle modified p-Si electrode in non-aqueous solutions , 1998 .

[116]  Charles C. Sorrell,et al.  Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects , 2002 .

[117]  Akihiko Kudo,et al.  Electrochemical reduction of carbon dioxide under high pressure on various electrodes in an aqueous electrolyte , 1995 .

[118]  Mitchell R. M. Bruce,et al.  Electrocatalytic reduction of CO2 by a complex of rhenium in thin polymeric films , 1989 .

[119]  L. Lee,et al.  Electrocatalytic reduction of carbon dioxide by a polymeric film of rhenium tricarbonyl dipyridylamine , 2009 .

[120]  Y. Nakato,et al.  Efficient Photoelectrochemical Reduction of Carbon Dioxide on a p-Type Silicon (p-Si) Electrode Modified with Very Small Copper Particles , 1994 .

[121]  K. W. Frese,et al.  Reduction of Carbon Dioxide to Methanol on n ‐ and p ‐ GaAs and p ‐ InP . Effect of Crystal Face, Electrolyte and Current Density , 1983 .

[122]  M. Wrighton Chemically Derivatized Semiconductor Photoelectrodes. , 1983 .

[123]  K. Hara,et al.  Electrocatalytic Formation of CH 4 from CO 2 on a Pt Gas Diffusion Electrode , 1997 .

[124]  P. Neta,et al.  Cobalt Corrin Catalyzed Photoreduction of CO2 , 2000 .

[125]  C. Kubiak,et al.  Re(bipy-tBu)(CO)3Cl-improved catalytic activity for reduction of carbon dioxide: IR-spectroelectrochemical and mechanistic studies. , 2010, Inorganic chemistry.

[126]  Erwin Reisner,et al.  Efficient and clean photoreduction of CO(2) to CO by enzyme-modified TiO(2) nanoparticles using visible light. , 2010, Journal of the American Chemical Society.

[127]  J. Savéant Molecular Catalysis of Electrochemical Reactions. Mechanistic Aspects , 2008 .

[128]  S. Matsuoka,et al.  Efficient and selective electron mediation of cobalt complexes with cyclam and related macrocycles in the p-terphenyl-catalyzed photoreduction of CO2 , 1993 .

[129]  Osamu Ishitani,et al.  Highly efficient supramolecular photocatalysts for CO_2 reduction using visible light , 2007, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[130]  C. Stalder,et al.  Electrochemical reduction of aqueous bicarbonate to formate with high current efficiency near the thermodynamic potential at chemically derivatized electrodes , 1984 .

[131]  J. W. Otvos,et al.  Photochemical reduction of carbon dioxide using nickel tetraazamacrocycles , 1990 .

[132]  T. Meyer,et al.  Photochemistry of Ru(bpy)/sub 3//sup 2 +/ , 1982 .

[133]  Susumu Kuwabata,et al.  Effects of electrolytes on the photoelectrochemical reduction of carbon dioxide at illuminated p-type cadmium telluride and p-type indium phosphide electrodes in aqueous solutions , 1988 .

[134]  Reshef Tenne,et al.  Photoelectrochemical reduction of carbon dioxide in aqueous solutions on p-GaP electrodes: an a.c. impedance study with phase-sensitive detection , 1996 .

[135]  T. Lian,et al.  Photoinduced ultrafast electron transfer from CdSe quantum dots to Re-bipyridyl complexes. , 2008, Journal of the American Chemical Society.

[136]  K. Ogura,et al.  Catalytic conversion of CO and CO2 into methanol with a solar cell , 1986 .

[137]  E. Bilgen,et al.  Solar hydrogen from photovoltaic-electrolyzer systems , 2001 .

[138]  Arthur J. Nozik,et al.  Photoelectrochemistry: Applications to Solar Energy Conversion , 1978 .

[139]  M. Kaneko,et al.  Factors affecting selective electrocatalytic co2 reduction with cobalt phthalocyanine incorporated in a polyvinylpyridine membrane coated on a graphite electrode , 1996 .

[140]  R. Murray,et al.  Electrocatalytic reduction of CO2 at a chemically modified electrode , 1985 .

[141]  B. Aurian‐Blajeni,et al.  Electrochemical reduction of carbon dioxide at elevated pressure on semiconductor electrodes in aqueous solution , 1994 .

[142]  M. Halmann,et al.  Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells , 1978, Nature.

[143]  Somnath C. Roy,et al.  Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. , 2010, ACS nano.

[144]  Tetsuo Soga,et al.  Efficient Solar Water Splitting, Exemplified by RuO2-Catalyzed AlGaAs/Si Photoelectrolysis. , 2001 .