Understanding the mechanism of metal-induced degradation in perovskite nanocrystals.

A deeper understanding of the perovskite-metal chemistry is crucial to elucidate the instability problems at the device level that can be caused by such interactions. Here, we study the reactions occurring between CsPbX3 (X = Br, BrI, I) perovskite and metal (M = Ag, Cu, Au) nanocrystals. We demonstrate a fast (<1 hour) optical and structural degradation of the I-containing nanocrystals driven by the formation of metal iodides with reaction kinetics according to the following order Cu < Ag < Au. These results point to the need for thoughtful considerations while constructing optoelectronic devices out of all-inorganic CsPbX3 nanocrystals, where the use of contact metals is a necessity.

[1]  Sean P. Dunfield,et al.  Reactions at noble metal contacts with methylammonium lead triiodide perovskites: Role of underpotential deposition and electrochemistry , 2019, APL Materials.

[2]  Chenghao Bi,et al.  Thermally Stable Copper(II)-Doped Cesium Lead Halide Perovskite Quantum Dots with Strong Blue Emission. , 2019, The journal of physical chemistry letters.

[3]  Yadong Yin,et al.  Photoreversible luminescence switching of CsPbI3 nanocrystals sensitized by photochromic AgI nanocrystals. , 2019, Nanoscale.

[4]  L. Manna,et al.  Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and Their Optical Properties , 2019, Chemical reviews.

[5]  Nakita K. Noel,et al.  Facile Synthesis of Stable and Highly Luminescent Methylammonium Lead Halide Nanocrystals for Efficient Light Emitting Devices. , 2019, Journal of the American Chemical Society.

[6]  Yujing Li,et al.  Recent advances toward practical use of halide perovskite nanocrystals , 2018 .

[7]  Yang-Fan Xu,et al.  Core@Shell CsPbBr3@Zeolitic Imidazolate Framework Nanocomposite for Efficient Photocatalytic CO2 Reduction , 2018, ACS Energy Letters.

[8]  Wenguang Tu,et al.  Amino-Assisted Anchoring of CsPbBr3 Perovskite Quantum Dots on Porous g-C3 N4 for Enhanced Photocatalytic CO2 Reduction. , 2018, Angewandte Chemie.

[9]  L. Manna,et al.  The Many “Facets” of Halide Ions in the Chemistry of Colloidal Inorganic Nanocrystals , 2018, Chemical reviews.

[10]  Q. Akkerman,et al.  Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals , 2018, Nature Materials.

[11]  N. Koch,et al.  Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells , 2017 .

[12]  Sung Wook Park,et al.  Doped Halide Perovskite Nanocrystals for Reabsorption-Free Luminescent Solar Concentrators , 2017, ACS energy letters.

[13]  Suling Zhao,et al.  Postsynthetic, Reversible Cation Exchange between Pb2+ and Mn2+ in Cesium Lead Chloride Perovskite Nanocrystals , 2017 .

[14]  Emad Oveisi,et al.  CsPbBr3 QD/AlOx Inorganic Nanocomposites with Exceptional Stability in Water, Light, and Heat. , 2017, Angewandte Chemie.

[15]  Christopher S. Galik,et al.  Au Exchange or Au Deposition: Dual Reaction Pathways in Au-CsPbBr3 Heterostructure Nanoparticles. , 2017, Nano letters.

[16]  Zhiwen Jin,et al.  High-performance transparent ultraviolet photodetectors based on inorganic perovskite CsPbCl3 nanocrystals , 2017 .

[17]  Liduo Wang,et al.  Direct Evidence of Ion Diffusion for the Silver‐Electrode‐Induced Thermal Degradation of Inverted Perovskite Solar Cells , 2017 .

[18]  M. Biesinger Advanced analysis of copper X‐ray photoelectron spectra , 2017 .

[19]  Yang-Fan Xu,et al.  A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction. , 2017, Journal of the American Chemical Society.

[20]  Sara Bals,et al.  Highly Emissive Divalent-Ion-Doped Colloidal CsPb1–xMxBr3 Perovskite Nanocrystals through Cation Exchange , 2017, Journal of the American Chemical Society.

[21]  Antonietta Guagliardi,et al.  Dismantling the “Red Wall” of Colloidal Perovskites: Highly Luminescent Formamidinium and Formamidinium–Cesium Lead Iodide Nanocrystals , 2017, ACS nano.

[22]  P. Kamat,et al.  Au–CsPbBr3 Hybrid Architecture: Anchoring Gold Nanoparticles on Cubic Perovskite Nanocrystals , 2017 .

[23]  Q. Akkerman,et al.  Strongly emissive perovskite nanocrystal inks for high-voltage solar cells , 2016, Nature Energy.

[24]  Mohammad Khaja Nazeeruddin,et al.  Intrinsic Halide Segregation at Nanometer Scale Determines the High Efficiency of Mixed Cation/Mixed Halide Perovskite Solar Cells. , 2016, Journal of the American Chemical Society.

[25]  William W. Yu,et al.  Efficient and Stable White LEDs with Silica‐Coated Inorganic Perovskite Quantum Dots , 2016, Advanced materials.

[26]  Jinsong Huang,et al.  Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime? , 2016 .

[27]  V. Klimov,et al.  Mn2+-Doped Lead Halide Perovskite Nanocrystals with Dual-Color Emission Controlled by Halide Content. , 2016, Journal of the American Chemical Society.

[28]  Anders Hagfeldt,et al.  Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance , 2016, Science.

[29]  Ashley R. Marshall,et al.  Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics , 2016, Science.

[30]  Sergei Tretiak,et al.  High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells , 2016, Nature.

[31]  Anders Hagfeldt,et al.  Not All That Glitters Is Gold: Metal-Migration-Induced Degradation in Perovskite Solar Cells. , 2016, ACS nano.

[32]  Wei Zhang,et al.  Photo-induced halide redistribution in organic–inorganic perovskite films , 2016, Nature Communications.

[33]  Feng Gao,et al.  Highly Efficient Perovskite Nanocrystal Light‐Emitting Diodes Enabled by a Universal Crosslinking Method , 2016, Advanced materials.

[34]  Kwanghee Lee,et al.  Achieving long-term stable perovskite solar cells via ion neutralization , 2016 .

[35]  D. Mitzi,et al.  Inorganic Perovskites : Structural Versatility for Functional Materials Design , 2016 .

[36]  H. Zeng,et al.  CsPbX3 Quantum Dots for Lighting and Displays: Room‐Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Light‐Emitting Diodes , 2016 .

[37]  Yang Yang,et al.  Interfacial Degradation of Planar Lead Halide Perovskite Solar Cells. , 2016, ACS nano.

[38]  Zeger Hens,et al.  Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals. , 2016, ACS nano.

[39]  Min-Sang Lee,et al.  All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. , 2016, Chemical communications.

[40]  H. Zeng,et al.  All‐Inorganic Colloidal Perovskite Quantum Dots: A New Class of Lasing Materials with Favorable Characteristics , 2015, Advanced materials.

[41]  Shenghao Wang,et al.  Silver Iodide Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top Electrodes , 2015 .

[42]  M. Fiebig,et al.  Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites , 2015, Nature Communications.

[43]  Liberato Manna,et al.  Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions , 2015, Journal of the American Chemical Society.

[44]  M. Kovalenko,et al.  Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I) , 2015, Nano letters.

[45]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.

[46]  Iris Visoly-Fisher,et al.  Temperature- and Component-Dependent Degradation of Perovskite Photovoltaic Materials under Concentrated Sunlight. , 2015, The journal of physical chemistry letters.

[47]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[48]  Sandeep Kumar Pathak,et al.  Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells , 2013, Nature Communications.

[49]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[50]  Joo-Yong Lee,et al.  Clusterin and LRP2 are critical components of the hypothalamic feeding regulatory pathway , 2013, Nature Communications.

[51]  George C. Schatz,et al.  Reversing the size-dependence of surface plasmon resonances , 2010, Proceedings of the National Academy of Sciences.

[52]  P. Yang,et al.  Room‐Temperature Formation of Hollow Cu2O Nanoparticles , 2010, Advanced materials.

[53]  Gustaaf Van Tendeloo,et al.  End‐to‐End Assembly of Shape‐Controlled Nanocrystals via a Nanowelding Approach Mediated by Gold Domains , 2009, Advanced materials.

[54]  E. Wang,et al.  Iodine-induced gold-nanoparticle fusion/fragmentation/aggregation and iodine-linked nanostructured assemblies on a glass substrate. , 2003, Angewandte Chemie.