On the applicability of local softness and hardness.

Global hardness and softness and the associated hard/soft acid/base (HSAB) principle have been used to explain many experimental observed reactivity patterns and these concepts can be found in textbooks of general, inorganic, and organic chemistry. In addition, local versions of these reactivity indices and principles have been defined to describe the regioselectivity of systems. In a very recent article (Chem.-Eur. J. 2008, 14, 8652), the present authors have shown that the picture of these well-known descriptors is incomplete and that the understanding of these reactivity indices must be "reinterpreted". In fact, the local softness and hardness contain the same "potential information" and they should be interpreted as the "local abundance" or "concentration" of their corresponding global properties. In this contribution, we analyze the implications of this new point of view for the applicability of these well-known descriptors when comparing two sites in three situations: two sites within one molecule, two sites in two different, but noninteracting molecules, and two sites in two different, but interacting, molecules. The implications on the HSAB principle are highlighted, leading to the discussion of the role of the electrostatic interaction.

[1]  James S. M. Anderson,et al.  Conceptual Density-Functional Theory for General Chemical Reactions, Including Those That Are Neither Charge- nor Frontier-Orbital-Controlled. 2. Application to Molecules Where Frontier Molecular Orbital Theory Fails. , 2007, Journal of chemical theory and computation.

[2]  P. Geerlings,et al.  Local hardness: a critical account , 2007 .

[3]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .

[4]  P. Chattaraj Chemical Reactivity and Selectivity: Local HSAB Principle versus Frontier Orbital Theory , 2001 .

[5]  R. Parr,et al.  Elucidating the hard/soft acid/base principle: a perspective based on half-reactions. , 2006, The Journal of chemical physics.

[6]  R. Pearson Hard and soft acids and bases, HSAB, part II: Underlying theories , 1968 .

[7]  Ralph G. Pearson,et al.  Chemical Hardness: PEARSON:CHEM.HARDNESS O-BK , 1997 .

[8]  R. Parr,et al.  Simplified Models for Hardness Kernel and Calculations of Global Hardness , 1997 .

[9]  R. Parr,et al.  Aspects of the Softness and Hardness Concepts of Density‐Functional Theory , 1991 .

[10]  R. Parr,et al.  Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Paul W Ayers,et al.  Predicting the reactivity of ambidentate nucleophiles and electrophiles using a single, general-purpose, reactivity indicator. , 2007, Physical chemistry chemical physics : PCCP.

[12]  James S. M. Anderson,et al.  Conceptual Density-Functional Theory for General Chemical Reactions, Including Those That Are Neither Charge- nor Frontier-Orbital-Controlled. 1. Theory and Derivation of a General-Purpose Reactivity Indicator. , 2007, Journal of chemical theory and computation.

[13]  P. Geerlings,et al.  DEVELOPMENT OF LOCAL HARDNESS RELATED REACTIVITY INDICES : THEIR APPLICATION IN A STUDY OF THE SE AT MONOSUBSTITUTED BENZENES WITHIN THE HSAB CONTEXT , 1995 .

[14]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[15]  P. Ayers The physical basis of the hard/soft acid/base principle. , 2007, Faraday discussions.

[16]  R. Deka,et al.  Reactivity of α,β-unsaturated carbonyl compounds towards nucleophilic addition reaction: a local hard–soft acid–base approach , 2003 .

[17]  Swapan K. Ghosh Energy derivatives in density-functional theory , 1990 .

[18]  J. Steyaert,et al.  Influence of the π–π interaction on the hydrogen bonding capacity of stacked DNA/RNA bases , 2005, Nucleic acids research.

[19]  G. Klopman,et al.  Chemical reactivity and the concept of charge- and frontier-controlled reactions , 1968 .

[20]  Ram Kinkar Roy,et al.  On the Reliability of Global and Local Electrophilicity Descriptors , 2004 .

[21]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[22]  Paul W Ayers,et al.  Do the local softness and hardness indicate the softest and hardest regions of a molecule? , 2008, Chemistry.

[23]  M. Solà,et al.  An assessment of a simple hardness kernel approximation for the calculation of the global hardness in a series of Lewis acids and bases , 2005 .

[24]  Ranbir Singh,et al.  J. Mol. Struct. (Theochem) , 1996 .

[25]  M. Berkowitz,et al.  Molecular hardness and softness, local hardness and softness, hardness and softness kernels, and relations among these quantities , 1988 .

[26]  A. Ponti,et al.  Assessment of mechanistic hypotheses of 1,3-dipolar cycloaddition of (arylsulfonyl)allene to nitrilimines by DFT reactivity indices , 2003 .

[27]  J. Gázquez Perspectives on the Density Functional Theory of Chemical Reactivity , 2008 .

[28]  Ralph G. Pearson,et al.  HARD AND SOFT ACIDS AND BASES , 1963 .

[29]  M. Aschi,et al.  Gas-Phase Reactivity of Hydroxylamine toward Charged Electrophiles. A Mass Spectrometric and Computational Study of the Protonation and Methylation of H2NOH , 1995 .

[30]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[31]  Weitao Yang,et al.  The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. , 1986, Journal of the American Chemical Society.

[32]  P. Geerlings,et al.  Interplay between π–π interactions and the H-bonding ability of aromatic nitrogen bases , 2005 .

[33]  V. Lebedev,et al.  A QUADRATURE FORMULA FOR THE SPHERE OF THE 131ST ALGEBRAIC ORDER OF ACCURACY , 1999 .

[34]  James S. M. Anderson,et al.  Perturbative perspectives on the chemical reaction prediction problem , 2005 .

[35]  H. Chermette,et al.  Reactivity Indices in Density Functional Theory: A New Evaluation of the Condensed Fukui Function by Numerical Integration , 1998 .

[36]  Robert G. Parr,et al.  Density functional approach to the frontier-electron theory of chemical reactivity , 1984 .

[37]  P. Geerlings,et al.  Conceptual DFT: the chemical relevance of higher response functions. , 2008, Physical chemistry chemical physics : PCCP.

[38]  L. Pacios Study of a gradient expansion approach to compute the Fukui function in atoms , 1997 .

[39]  P. Fuentealba,et al.  Empirical Energy−Density Relationships for the Analysis of Substituent Effects in Chemical Reactivity , 2000 .

[40]  M. Berkowitz,et al.  A classical fluid‐like approach to the density‐functional formalism of many‐electron systems , 1985 .

[41]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[42]  Jeremy N. S. Evans,et al.  The Fukui Function: A Key Concept Linking Frontier Molecular Orbital Theory and the Hard-Soft-Acid-Base Principle , 1995 .

[43]  Alejandro Toro-Labbé,et al.  Condensation of Frontier Molecular Orbital Fukui Functions , 2004 .

[44]  R. Parr,et al.  Local hardness equalization: exploiting the ambiguity. , 2008, The Journal of chemical physics.

[45]  P. Ayers,et al.  Perspective on “Density functional approach to the frontier-electron theory of chemical reactivity” , 2000 .

[46]  S. Saha,et al.  N-dependence problem of local hardness parameter. , 2008, Physical chemistry chemical physics : PCCP.

[47]  Robert G. Parr,et al.  Variational Principles for Describing Chemical Reactions: The Fukui Function and Chemical Hardness Revisited , 2000 .

[48]  S. Saha,et al.  "One-into-many" model: an approach on DFT based reactivity descriptor to predict the regioselectivity of large systems. , 2007, The journal of physical chemistry. B.

[49]  P. Geerlings,et al.  Analogies and differences between two ways to evaluate the global hardness. , 2006, The Journal of chemical physics.

[50]  P. Geerlings,et al.  Site of Protonation in Aniline and Substituted Anilines in the Gas Phase: A Study via the Local Hard and Soft Acids and Bases Concept , 1998 .

[51]  A. K. Chandra,et al.  Approach to regiochemistry using local softness in 1,3‐dipolar cycloadditions , 1998 .

[52]  P. Geerlings,et al.  REACTIVITY AND STABILITY OF AROMATIC CARBONYL COMPOUNDS USING DENSITY FUNCTIONAL THEORY-BASED LOCAL AND GLOBAL REACTIVITY DESCRIPTORS , 1999 .

[53]  L. Vendier,et al.  NHC-derived bis(amidiniophosphine) ligands of Rh(I) complexes: versatile cis-trans chelation driven by an interplay of electrostatic and orbital effects. , 2009, Inorganic chemistry.

[54]  R. Parr,et al.  Absolute hardness: companion parameter to absolute electronegativity , 1983 .

[55]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[56]  Paul Geerlings,et al.  On the quality of the hardness kernel and the Fukui function to evaluate the global hardness , 2007, J. Comput. Chem..

[57]  Kenichi Fukui,et al.  Molecular Orbital Theory of Orientation in Aromatic, Heteroaromatic, and Other Conjugated Molecules , 1954 .

[58]  Viktorya Aviyente,et al.  Interpretation of hydrogen bonding in the weak and strong regions using conceptual DFT descriptors. , 2006, The journal of physical chemistry. A.

[59]  Swapan K. Ghosh,et al.  New Scale of Atomic Orbital Radii and Its Relationship with Polarizability, Electronegativity, Other Atomic Properties, and Bond Energies of Diatomic Molecules , 1996 .

[60]  Henry Chermette,et al.  Chemical reactivity indexes in density functional theory , 1999 .

[61]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[62]  P. Geerlings,et al.  Quantum similarity study of atoms: a bridge between hardness and similarity indices. , 2007, The Journal of chemical physics.

[63]  Tapan K. Ghanty,et al.  Correlation between hardness, polarizability, and size of atoms, molecules, and clusters , 1993 .

[64]  Francisco Méndez,et al.  Chemical Reactivity of Enolate Ions: The Local Hard and Soft Acids and Bases Principle Viewpoint , 1994 .

[65]  R. Pearson Hard and soft acids and bases, HSAB, part 1: Fundamental principles , 1968 .

[66]  R. Parr,et al.  Variational method for determining the Fukui function and chemical hardness of an electronic system , 1995 .

[67]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[68]  A. Becke A multicenter numerical integration scheme for polyatomic molecules , 1988 .

[69]  M. Berkowitz,et al.  On the concept of local hardness in chemistry , 1985 .

[70]  M. Nguyen,et al.  A theoretical approach to the regioselectivity in 1,3-dipolar cycloadditions of diazoalkanes, hydrazoic acid and nitrous oxide to acetylenes, phosphaalkynes and cyanides , 2003 .

[71]  A. Ponti,et al.  DFT-based quantitative prediction of regioselectivity: cycloaddition of nitrilimines to methyl propiolate. , 2001, The Journal of organic chemistry.

[72]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .

[73]  Y. Li,et al.  The hard-soft acid-base principle in enzymatic catalysis: dual reactivity of phosphoenolpyruvate. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Paul Geerlings,et al.  The hardness kernel as the basis for global and local reactivity indices , 2008, J. Comput. Chem..

[75]  R. Parr,et al.  Fukui function from a gradient expansion formula, and estimate of hardness and covalent radius for an atom , 1995 .

[76]  M. Solà,et al.  Global hardness evaluation using simplified models for the hardness kernel , 2002 .

[77]  M. Berkowitz Density Functional Approach to Frontier Controlled Reactions , 1987 .

[78]  P. Geerlings,et al.  MECHANISM OF 2 + 1 CYCLOADDITIONS OF HYDROGEN ISOCYANIDE TO ALKYNES : MOLECULAR ORBITAL AND DENSITY FUNCTIONAL THEORY STUDY , 1999 .

[79]  P. Geerlings,et al.  Effect of the π-π stacking interaction on the acidity of phenol , 2005 .

[80]  F. Méndez,et al.  The Hard and Soft Acids and Bases Principle: An Atoms in Molecules Viewpoint , 1994 .

[81]  P. Geerlings,et al.  Oxygen Basicity in Alkaline Cation-Exchanged Zeolite and the Effect of Isomorphous Substitution. Use of Hard Descriptors , 2007 .

[82]  Kenichi Fukui,et al.  A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons , 1952 .

[83]  P. Geerlings,et al.  Conceptual density functional theory. , 2003, Chemical reviews.

[84]  T. Koopmans,et al.  Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms , 1934 .

[85]  Paul Geerlings,et al.  LOCAL SOFTNESS AS A REGIOSELECTIVITY INDICATOR IN 4+2 CYCLOADDITION REACTIONS , 1997 .

[86]  F. Nazari,et al.  Density functional study of the relative reactivity of the carbonyl group in substituted cyclohexanone , 2007 .

[87]  M. Nguyen,et al.  DENSITY FUNCTIONAL APPROACH TO REGIOCHEMISTRY, ACTIVATION ENERGY, AND HARDNESS PROFILE IN 1,3-DIPOLAR CYCLOADDITIONS , 1998 .