Halophyte crop cultivation: The case for Salicornia and Sarcocornia

Abstract Increasing soil salinization and the growing scarcity of fresh water dictate the need for a creative solution to attain sustainable crop production. To accomplish this aim, the domestication of inherently salt tolerant plant species with economic value is proposed as a straightforward methodology. Most studies investigating salt tolerance mechanisms are linked to small, experimental systems that cannot be generalized to the real agricultural context. The crops Salicornia and Sarcocornia , however, with their extreme salt tolerance and long history of consumption by humans, make the ideal model plants on which to base a halophyte growth strategy. New applied technologies were developed for leafy vegetable production using small-scale greenhouse and in-field studies. Several cultivation systems adapted to the irrigation water salinity and the available soil conditions are described. Daylength manipulation and a repetitive harvest regime partially elucidated the flowering patterns of Salicornia and Sarcocornia and showed that flowering should be prevented for maximal vegetable production. Additionally, the beneficial effect of saline irrigation on quality parameters via the enhancement of stress-induced secondary metabolites with antioxidant capacity should be considered during cultivation. This review summarizes the recent developments in growing halophytes for food production with saline irrigation, using Salicornia and Sarcocornia as a case study.

[1]  M. Abdal Salicornia production in Kuwait. , 2009 .

[2]  J. L. Gallagher Halophytic crops for cultivation at seawater salinity , 1985 .

[3]  P. Mohanty,et al.  Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes. , 2004, Journal of plant physiology.

[4]  I. Suzuki,et al.  Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[5]  M. Sagi,et al.  The Mo-hydroxylases xanthine dehydrogenase and aldehyde oxidase in ryegrass as affected by nitrogen and salinity , 1998 .

[6]  A. Simopoulos Omega-3 fatty acids and antioxidants in edible wild plants. , 2004, Biological research.

[7]  A. Wrona,et al.  Saline Culture of Crops: A Genetic Approach , 1980, Science.

[8]  R. Zurayk,et al.  Inula crithmoides: A candidate plant for saline agriculture , 1996 .

[9]  J. Cushman,et al.  Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum. , 2007, Journal of experimental botany.

[10]  Tijen Demiral,et al.  Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation , 2007 .

[11]  R. Kuehl,et al.  Salicornia bigelovii Torr.: a seawater-irrigated forage for goats , 1992 .

[12]  M. A. Khan,et al.  Halophyte seed germination , 2006 .

[13]  Edward P. Glenn,et al.  Halophytes for the treatment of saline aquaculture effluent , 1999 .

[14]  C. Rice-Evans,et al.  The Antioxidant Activity of Regularly Consumed Fruit and Vegetables Reflects their Phenolic and Vitamin C Composition , 2002, Free radical research.

[15]  H. Koyro,et al.  Interactive effects of NaCl salinity and elevated atmospheric CO2 concentration on growth, photosynthesis, water relations and chemical composition of the potential cash crop halophyte Aster tripolium L. , 2009 .

[16]  W. Franke Vitamin C in sea fennel (crithmum maritimum), an edible wild plant , 1982, Economic Botany.

[17]  J. Rozema,et al.  Ecophysiological response of Crambe maritima to airborne and soil-borne salinity. , 2010, Annals of botany.

[18]  T. Giudice,et al.  The Role of Consumer Acceptance in the Food Innovation Process: Young Consumer Perception of Functional Food in Italy , 2010 .

[19]  H. Saneoka,et al.  Effect of salinity on osmotic adjustment, glycinebetaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritima , 2004 .

[20]  H. Koyro,et al.  Halophytic crops: a resource for the future to reduce the water crisis? , 2011 .

[21]  M. Yamaguchi,et al.  World Vegetables: Principles, Production and Nutritive Values , 1983 .

[22]  N. Kalogerakis,et al.  Halophytes Present New Opportunities in Phytoremediation of Heavy Metals and Saline Soils , 2011 .

[23]  G. Caneva,et al.  Food, flavouring and feed plant traditions in the Tyrrhenian sector of Basilicata, Italy , 2006, Journal of ethnobiology and ethnomedicine.

[24]  R. Varady,et al.  Arid lands: today and tomorrow , 1990 .

[25]  W. Koh,et al.  Antioxidant activity and profiles of common vegetables in Singapore , 2010 .

[26]  C. Abdelly,et al.  Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity , 2005 .

[27]  P. Eganathan,et al.  Oil analysis in seeds of Salicornia brachiata , 2006 .

[28]  S. Grattan,et al.  Salinity–mineral nutrient relations in horticultural crops , 1998 .

[29]  M. Sagi,et al.  Nitrate reductase and molybdenum cofactor in annual ryegrass as affected by salinity and nitrogen source , 1997 .

[30]  T. Samocha,et al.  Effect of seawater concentration on the productivity and nutritional value of annual Salicornia and perennial Sarcocornia halophytes as leafy vegetable crops , 2011 .

[31]  J. Guil‐Guerrero,et al.  Lipids classes, fatty acids and carotenes of the leaves of six edible wild plants , 1999 .

[32]  J. Rozema,et al.  Crops for a Salinized World , 2008, Science.

[33]  M. Sagi,et al.  Molybdenum as an essential element for improving total yield in seawater-grown Salicornia europaea L. , 2010 .

[34]  M. Khan,et al.  GROWTH AND SELECTIVE ION TRANSPORT OF LIMONIUM STOCKSII PLUMBAGINACEA UNDER SALINE CONDITIONS , 2008 .

[35]  D. Pasternak,et al.  Irrigation with brackish water under desert conditions X. Irrigation management of tomatoes (Lycopersicon esculentum Mills) on desert sand dunes , 1995 .

[36]  C. Abdelly,et al.  Salt response of Crithmum maritimum, an oleagineous halophyte , 2004 .

[37]  H. Shaer Halophytes and salt-tolerant plants as potential forage for ruminants in the Near East region. , 2010 .

[38]  E. Glenn,et al.  Global distribution and potential for halophytes , 1994 .

[39]  A. Nishida,et al.  Journal of Ethnobiology and Ethnomedicine Open Access the Lunar-tide Cycle Viewed by Crustacean and Mollusc Gatherers in the State of Paraíba, Northeast Brazil and Their Influence in Collection Attitudes , 2006 .

[40]  T. Flowers,et al.  Salinity tolerance in halophytes. , 2008, The New phytologist.

[41]  D. L. Scarnecchia,et al.  Halophytes as a resource for livestock and for rehabilitation of degraded lands , 1994 .

[42]  R. Kuehl,et al.  Salicornia bigelovii Torr.: An Oilseed Halophyte for Seawater Irrigation , 1991, Science.

[43]  Tijen Demiral,et al.  Recent developments in understanding salinity tolerance , 2009 .

[44]  Edward P. Glenn,et al.  Potential for the improvement of Salicornia bigelovii through selective breeding. , 2010 .

[45]  M. Rhee,et al.  SALICORNIA HERBACEAE: BOTANICAL, CHEMICAL AND PHARMACOLOGICAL REVIEW OF HALOPHYTE MARSH PLANT , 2009 .

[46]  J. Castillo,et al.  Biological Flora of the British Isles: Sarcocornia perennis (Miller) A.J. Scott , 2006 .

[47]  Edward P. Glenn,et al.  Salt Tolerance and Crop Potential of Halophytes , 1999 .

[48]  J. H. Dickson,et al.  Forensic palynology and ethnobotany of Salicornia species (Chenopodiaceae) in northwest Canada and Alaska , 2005 .

[49]  J. Zhu,et al.  Plant salt tolerance. , 2001, Trends in plant science.

[50]  A. Cunningham,et al.  A comparison of cultivation and wild collection of medicinal and aromatic plants under sustainability aspects , 2006 .

[51]  D. Sokoloff,et al.  A taxonomic nightmare comes true: phylogeny and biogeography of glassworts (Salicornia L., Chenopodiaceae) , 2007 .

[52]  M. Khan,et al.  Ecophysiology of high salinity tolerant plants. , 2006 .

[53]  D. Pasternak,et al.  Evaluation of saltgrass as a fodder crop for livestock , 2005 .

[54]  C. Abdelly,et al.  Responses of Batis maritima plants challenged with up to two‐fold seawater NaCl salinity , 2010 .

[55]  M. Pardo-de-Santayana,et al.  Ethnobotanical review of wild edible plants in Spain , 2006 .

[56]  H. Koyro,et al.  Mechanisms Of Cash Crop Halophytes To Maintain Yields And Reclaim Saline Soils In Arid Areas , 2008 .

[57]  T. Flowers,et al.  Breeding for salinity resistance in crop plants: Where next? , 1995 .

[58]  Z. Lisiewska,et al.  Effect of processing on the amino acid content of New Zealand spinach (Tetragonia tetragonioides Pall. Kuntze) , 2010 .

[59]  L. Bromham,et al.  Evolution of halophytes: multiple origins of salt tolerance in land plants , 2010 .

[60]  T. Samocha,et al.  Effects of day length on flowering and yield production of Salicornia and Sarcocornia species , 2011 .

[61]  S. Grattan,et al.  Feasibility of irrigating pickleweed (Salicornia bigelovii. Torr) with hyper-saline drainage water. , 2008, Journal of environmental quality.

[62]  B. Gul,et al.  Germination responses of Salicornia rubra to temperature and salinity , 2000 .

[63]  C. Grieve,et al.  Mineral Nutrition of Leafy Vegetable Crops Irrigated with Saline Drainage Water , 2001 .

[64]  Edward P. Glenn,et al.  IRRIGATING CROPS WITH SEAWATER , 1998 .

[65]  T. Flowers Improving crop salt tolerance. , 2004, Journal of experimental botany.

[66]  S. Pascale,et al.  Saline agriculture in Mediterranean environments , 2011 .

[67]  H. Koyro Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.) , 2006 .

[68]  M. Sagi,et al.  A critical role for ureides in dark and senescence-induced purine remobilization is unmasked in the Atxdh1 Arabidopsis mutant. , 2008, The Plant journal : for cell and molecular biology.

[69]  A. Davy,et al.  Salicornia L. (Salicornia pusilla J. Woods, S. ramosissima J. Woods, S. europaea L., S. obscura P.W. Ball & Tutin, S. nitens P.W. Ball & Tutin, S. fragilis P.W. Ball & Tutin and S. dolichostachya Moss) , 2001 .

[70]  C. Grieve,et al.  Growth Stage Modulates Salinity Tolerance of New Zealand Spinach (Tetragonia tetragonioides, Pall.) and Red Orach (Atriplex hortensis L.) , 2000 .

[71]  S. Shabala,et al.  Ion Transport in Halophytes , 2011 .

[72]  L. Mucina,et al.  Phylogeny of Salicornioideae (Chenopodiaceae): diversification, biogeography, and evolutionary trends in leaf and flower morphology , 2006 .

[73]  M. Ponti,et al.  Chemical and biological indicators of water quality in three agricultural watersheds of the Po valley, Italy , 2011 .

[74]  R. Howarth,et al.  Molybdenum Availability, Nitrogen Limitation, and Phytoplankton Growth in Natural Waters , 1985, Science.

[75]  Xiang Zhou,et al.  Nutritional characterization and changes in quality of Salicornia bigelovii Torr. during storage , 2010 .