Convergence of adaptive finite element methods in computational mechanics

The a priori convergence of finite element methods is based on the density property of the sequence of finite element spaces which essentially assumes a quasi-uniform mesh-refining. The advantage is guaranteed convergence for a large class of data and solutions; the disadvantage is a global mesh refinement everywhere accompanied by large computational costs. Adaptive finite element methods (AFEMs) automatically refine exclusively wherever their refinement indication suggests to do so and consequently leave out refinements at other locations. In other words, the density property is violated on purpose and the a priori convergence is not guaranteed automatically and, in fact, crucially depends on algorithmic details. The advantage of AFEMs is a more effective mesh in many practical examples accompanied by smaller computational costs; the disadvantage is that the desirable convergence property is not guaranteed a priori. Efficient error estimators can justify a numerical approximation a posteriori and so achieve reliability. But it is not theoretically justified from the start that the adaptive mesh-refinement will generate an accurate solution at all. In order to foster the development of a convergence theory and improved design of AFEMs in computational engineering and sciences, this paper describes a particular version of an AFEM and analyses convergence results for three model problems in computational mechanics: linear elastic material (A), nonlinear monotone elastic material (B), and Hencky elastoplastic material (C). It establishes conditions sufficient for error-reduction in (A), for energy-reduction in (B), and eventually for strong convergence of the stress field in (C) in the presence of small hardening.

[1]  Roger Temam,et al.  Mathematical Problems in Plasticity , 1985 .

[2]  Carsten Carstensen,et al.  Elastoviscoplastic Finite Element analysis in 100 lines of Matlab , 2002, J. Num. Math..

[3]  Andreas Veeser,et al.  Convergent adaptive finite elements for the nonlinear Laplacian , 2002, Numerische Mathematik.

[4]  Jun Hu,et al.  Framework for the A Posteriori Error Analysis of Nonconforming Finite Elements , 2007, SIAM J. Numer. Anal..

[5]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[6]  Carsten Carstensen,et al.  An Adaptive Mesh-Refining Algorithm Allowing for an H1 Stable L2 Projection onto Courant Finite Element Spaces , 2004 .

[7]  Claes Johnson,et al.  Computational Differential Equations , 1996 .

[8]  R. Verfürth A review of a posteriori error estimation techniques for elasticity problems , 1999 .

[9]  Claes Johnson,et al.  On plasticity with hardening , 1978 .

[10]  Christian Kreuzer,et al.  Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..

[11]  C. Carstensen QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS IN FINITE ELEMENT METHODS , 1999 .

[12]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..

[13]  Claes Johnson,et al.  Adaptive finite element methods in computational mechanics , 1992 .

[14]  P. Suquet,et al.  Discontinuities and Plasticity , 1988 .

[15]  J. Henson,et al.  Plasticity , 2010, Neurology.

[16]  Rolf Rannacher,et al.  A posteriori error control in finite element methods via duality techniques: Application to perfect plasticity , 1998 .

[17]  R. Verfürth,et al.  Edge Residuals Dominate A Posteriori Error Estimates for Low Order Finite Element Methods , 1999 .

[18]  Claes Johnson,et al.  A Mixed Finite Element Method for Plasticity Problems with Hardening , 1977 .

[19]  I. Hlavácek,et al.  Mathematical Theory of Elastic and Elasto Plastic Bodies: An Introduction , 1981 .

[20]  Carsten Carstensen,et al.  Adaptive Finite Element Mesh-Refining Algorithm for L$^2$-error control , 2007 .

[21]  Rob P. Stevenson,et al.  Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..

[22]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[23]  Carsten Carstensen,et al.  Matlab Implementation of the Finite Element Method in Elasticity , 2002, Computing.

[24]  Carsten Carstensen,et al.  Numerical analysis of the primal problem of elastoplasticity with hardening , 1999, Numerische Mathematik.

[25]  Carsten Carstensen,et al.  A convergent adaptive finite element method for the primal problem of elastoplasticity , 2006 .

[26]  Carsten Carstensen,et al.  Domain decomposition for a non-smooth convex minimization problem and its application to plasticity , 1997, Numer. Linear Algebra Appl..

[27]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[28]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[29]  王东东,et al.  Computer Methods in Applied Mechanics and Engineering , 2004 .

[30]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[31]  L. J. Comrie,et al.  Recent Progress in Scientific Computing , 1944 .

[32]  Carsten Carstensen Convergence of adaptive FEM for a class of degenerate convex minimization problems , 2007 .

[33]  Carsten Carstensen,et al.  Averaging techniques for reliable a posteriori FE-error control in elastoplasticity with hardening , 2003 .

[34]  Peter Lancaster,et al.  Newton's Method for a Generalized Inverse Eigenvalue Problem , 1997, Numer. Linear Algebra Appl..

[35]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[36]  Rolf Rannacher,et al.  A posteriori error estimation and mesh adaptation for finite element models in elasto-plasticity , 1999 .

[37]  Michael Vogelius,et al.  Feedback and adaptive finite element solution of one-dimensional boundary value problems , 1984 .

[38]  W. Han,et al.  Plasticity: Mathematical Theory and Numerical Analysis , 1999 .