Model Selection for Sinusoids in Noise: Statistical Analysis and a New Penalty Term

Detection of the number of sinusoids embedded in noise is a fundamental problem in statistical signal processing. Most parametric methods minimize the sum of a data fit (likelihood) term and a complexity penalty term. The latter is often derived via information theoretic criteria, such as minimum description length (MDL), or via Bayesian approaches including Bayesian information criterion (BIC) or maximum a posteriori (MAP). While the resulting estimators are asymptotically consistent, empirically their finite sample performance is strongly dependent on the specific penalty term chosen. In this paper we elucidate the source of this behavior, by relating the detection performance to the extreme value distribution of the maximum of the periodogram and of related random fields. Based on this relation, we propose a combined detection-estimation algorithm with a new penalty term. Our proposed penalty term is sharp in the sense that the resulting estimator achieves a nearly constant false alarm rate. A series of simulations support our theoretical analysis and show the superior detection performance of the suggested estimator.

[1]  William Feller,et al.  On the Berry-Esseen theorem , 1968 .

[2]  R. Davies Hypothesis Testing when a Nuisance Parameter is Present Only Under the Alternatives , 1987 .

[3]  Andreas Jakobsson,et al.  Sinusoidal Order Estimation Using Angles between Subspaces , 2009, EURASIP J. Adv. Signal Process..

[4]  Petre Stoica,et al.  Maximum likelihood estimation of the parameters of multiple sinusoids from noisy measurements , 1989, IEEE Trans. Acoust. Speech Signal Process..

[5]  Ashutosh Sabharwal,et al.  A combined order selection and parameter estimation algorithm for undamped exponentials , 2000, IEEE Trans. Signal Process..

[6]  Barry G. Quinn,et al.  The Estimation and Tracking of Frequency , 2001 .

[7]  Ilan Ziskind,et al.  Maximum likelihood localization of multiple sources by alternating projection , 1988, IEEE Trans. Acoust. Speech Signal Process..

[8]  E. Gassiat,et al.  Testing the order of a model using locally conic parametrization : population mixtures and stationary ARMA processes , 1999 .

[9]  E. J. Hannan,et al.  The maximum of the periodogram , 1983 .

[10]  Sang Uk Lee,et al.  On the adaptive lattice notch filter for the detection of sinusoids , 1993 .

[11]  K. F. Turkman,et al.  ON THE ASYMPTOTIC DISTRIBUTIONS OF MAXIMA OF TRIGONOMETRIC POLYNOMIALS WITH , 1984 .

[12]  Sabine Van Huffel,et al.  A Shift Invariance-Based Order-Selection Technique for Exponential Data Modelling , 2007, IEEE Signal Processing Letters.

[13]  Debasis Kundu Detecting the number of signals for undamped exponential models using information theoretic criteria , 1992 .

[14]  R. Adler On excursion sets, tube formulas and maxima of random fields , 2000 .

[15]  Debasis Kundu,et al.  Estimating the number of sinusoids and its performance analysis , 1998 .

[16]  R. Davies Hypothesis testing when a nuisance parameter is present only under the alternative , 1977 .

[17]  Boaz Nadler,et al.  Non-Parametric Detection of the Number of Signals: Hypothesis Testing and Random Matrix Theory , 2009, IEEE Transactions on Signal Processing.

[18]  Jian Li,et al.  Computationally efficient parameter estimation for harmonic sinusoidal signals , 2000, Signal Process..

[19]  Petar M. Djuric,et al.  A model selection rule for sinusoids in white Gaussian noise , 1996, IEEE Trans. Signal Process..

[20]  Shean-Tsong Chiu,et al.  Detecting Periodic Components in a White Gaussian Time Series , 1989 .

[21]  R. Adler,et al.  Random Fields and Geometry , 2007 .

[23]  Malcolm D. Macleod,et al.  Fast nearly ML estimation of the parameters of real or complex single tones or resolved multiple tones , 1998, IEEE Trans. Signal Process..

[24]  Debasis Kundu,et al.  Estimating the number of sinusoids in additive white noise , 1997, Signal Process..

[25]  Yuri I. Abramovich,et al.  Performance breakdown prediction for maximum-likelihood DoA estimation , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[26]  Jean-Jacques Fuchs,et al.  The Generalized Likelihood Ratio Test and the Sparse Representations Approach , 2010, ICISP.

[27]  Roland Badeau,et al.  A new perturbation analysis for signal enumeration in rotational invariance techniques , 2006, IEEE Transactions on Signal Processing.

[28]  Yoram Bresler,et al.  Exact maximum likelihood parameter estimation of superimposed exponential signals in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[29]  Bruce E. Hansen,et al.  Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis , 1996 .

[30]  R. Kumaresan,et al.  Estimation of frequencies of multiple sinusoids: Making linear prediction perform like maximum likelihood , 1982, Proceedings of the IEEE.

[31]  Joseph M. Francos,et al.  MAP model order selection rule for 2-D sinusoids in white noise , 2005, IEEE Transactions on Signal Processing.

[32]  Xiaobao Wang,et al.  AN AIC TYPE ESTIMATOR FOR THE NUMBER OF COSINUSOIDS , 1993 .

[33]  Dharmendra Lingaiah,et al.  The Estimation and Tracking of Frequency , 2004 .

[34]  V. Umapathi Reddy,et al.  SVD-based information theoretic criteria for detection of the number of damped/undamped sinusoids and their performance analysis , 1993, IEEE Trans. Signal Process..

[35]  H. Hartley,et al.  Tests of significance in harmonic analysis. , 1949, Biometrika.

[36]  Jeng-Kuang Hwang,et al.  A combined detection-estimation algorithm for the harmonic-retrieval problem , 1993, Signal Process..

[37]  E. Hannan Determining the number of jumps in a spectrum , 1993 .

[38]  B. G. Quinn,et al.  ESTIMATING THE NUMBER OF TERMS IN A SINUSOIDAL REGRESSION , 1989 .

[39]  I. Johnstone,et al.  On Hotelling's Formula for the Volume of Tubes and Naiman's Inequality , 1989 .

[40]  E. Hannan,et al.  DETERMINING THE NUMBER OF TERMS IN A TRIGONOMETRIC REGRESSION , 1994 .

[41]  Boaz Nadler,et al.  Parametric joint detection-estimation of the number of sources in array processing , 2010, 2010 IEEE Sensor Array and Multichannel Signal Processing Workshop.