The pupillary light response: Functional and anatomical interaction among inputs to the pretectum from transplanted retinae and host eyes

[1]  R. Lund,et al.  The pupillary light response: Assessment of function mediated by intracranial retinal transplants , 1995, Neuroscience.

[2]  R. Lund,et al.  The anatomical substrates subserving the pupillary light reflex in rats: Origin of the consensual pupillary response , 1994, Neuroscience.

[3]  A. Adolph,et al.  Development of cell markers in subretinal rabbit retinal transplants. , 1994, Experimental eye research.

[4]  R. Lund,et al.  Development of Light‐activated Pupilloconstriction in Rats as Mediated by Normal and Transplanted Retinae , 1992, The European journal of neuroscience.

[5]  T. Robbins,et al.  Striatal Graft‐Associated Recovery of a Lesion‐Induced Performance Deficit in the Rat Requires Learning to Use The Transplant , 1992, The European journal of neuroscience.

[6]  R. Lund,et al.  Rapid enhancement of transplant-mediated pupilloconstriction after elimination of competing host optic input. , 1991, Brain research. Developmental brain research.

[7]  R. Lund,et al.  Plasticity in innervation of the rat superior colliculus by transplanted retinae as a result of eye removal at maturity , 1991, Experimental Neurology.

[8]  R. Lund,et al.  Parameters of retinal graft-mediated responses are related to underlying target innervation , 1990, Brain Research.

[9]  R. Lund,et al.  Proximity as a factor in the innervation of host brain regions by retinal transplants , 1990, The Journal of comparative neurology.

[10]  R. Lund,et al.  Amphetamine sensitization of stress-induced turning in animals given unilateral dopamine transplants in infancy , 1990, Brain Research.

[11]  A. Adolph,et al.  Neuronal markers in rat retinal grafts. , 1990, Brain research. Developmental brain research.

[12]  M. G. Honig,et al.  Dil and DiO: versatile fluorescent dyes for neuronal labelling and pathway tracing , 1989, Trends in Neurosciences.

[13]  K. Hoffmann,et al.  The pupillary light reflex in normal and innate microstrabismic cats, I: Behavior and receptive-field analysis in the nucleus praetectalis olivaris , 1989, Visual Neuroscience.

[14]  K. Hoffmann,et al.  The pupillary light reflex in normal and innate microstrabismic cats, II: Retinal and cortical input to the nucleus praetectalis olivaris , 1989, Visual Neuroscience.

[15]  R. Lund,et al.  Retinal transplants can drive a pupillary reflex in host rat brains. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[16]  A. Lieberman,et al.  The olivary pretectal nucleus: experimental anatomical studies in the rat. , 1985, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[17]  R. Lund,et al.  Fetal retinae transplanted over tecta of neonatal rats respond to light and evoke patterned neuronal discharges in the host superior colliculus. , 1985, Brain research.

[18]  V. Perry,et al.  Ganglion cells in retinae transplanted to newborn rats , 1985, The Journal of comparative neurology.

[19]  C. M. Cicerone,et al.  Cells in the pretectal olivary nucleus are in the pathway for the direct light reflex of the pupil in the rat , 1984, Brain Research.

[20]  S. Ellias,et al.  The dendritic varicosity: a mechanism for electrically isolating the dendrites of cat retinal amacrine cells? , 1980, Brain Research.

[21]  F. Scalia,et al.  Topographic organization of the projections of the retina to the pretectal region in the rat , 1979, The Journal of comparative neurology.

[22]  M. Mesulam,et al.  Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. , 1978, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[23]  U. Ungerstedt,et al.  Postsynaptic supersensitivity after 6-hydroxy-dopamine induced degeneration of the nigro-striatal dopamine system. , 1971, Acta physiologica Scandinavica. Supplementum.

[24]  G. Shepherd,et al.  Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. , 1968, Journal of neurophysiology.

[25]  Hisao Suzuki,et al.  TONIC INHIBITION IN CAT LATERAL GENICULATENUCLEUS MAINTAINED BY RETINALSPONTANEOUS DISCHARGE , 1967 .

[26]  R. W. Rodieck,et al.  Slow dark discharge rhythms of cat retinal ganglion cells. , 1966, Journal of neurophysiology.

[27]  R. Lund,et al.  Chapter 30 Detecting the world through a retinal implant , 1990 .

[28]  R. Lund,et al.  Developmental and Functional Integration of Retinal Transplants with Host Rat Brains , 1990 .

[29]  K. E. Moore,et al.  Supersensitivity to dopamine agonists following unilateral, 6-hydroxydopamine-induced striatal lesions in mice. , 1975, The Journal of pharmacology and experimental therapeutics.

[30]  G M Shepherd,et al.  Dendrodendritic synaptic pathway for inhibition in the olfactory bulb. , 1966, Experimental neurology.