Bayesian estimation of intensity–duration–frequency curves and of the return period associated to a given rainfall event

Intensity–duration–frequency (IDF) curves are used extensively in engineering to assess the return periods of rainfall events and often steer decisions in urban water structures such as sewers, pipes and retention basins. In the province of Québec, precipitation time series are often short, leading to a considerable uncertainty on the parameters of the probabilistic distributions describing rainfall intensity. In this paper, we apply Bayesian analysis to the estimation of IDF curves. The results show the extent of uncertainties in IDF curves and the ensuing risk of their misinterpretation. This uncertainty is even more problematic when IDF curves are used to estimate the return period of a given event. Indeed, standard methods provide overly large return period estimates, leading to a false sense of security. Comparison of the Bayesian and classical approaches is made using different prior assumptions for the return period and different estimation methods. A new prior distribution is also proposed based on subjective appraisal by witnesses of the extreme character of the event.

[1]  Demetris Koutsoyiannis,et al.  Statistics of extremes and estimation of extreme rainfall: II. Empirical investigation of long rainfall records / Statistiques de valeurs extrêmes et estimation de précipitations extrêmes: II. Recherche empirique sur de longues séries de précipitations , 2004 .

[2]  Jeong-Soo Park,et al.  A simulation-based hyperparameter selection for quantile estimation of the generalized extreme value distribution , 2005, Math. Comput. Simul..

[3]  Robert Piessens,et al.  Quadpack: A Subroutine Package for Automatic Integration , 2011 .

[4]  G. Meehl,et al.  Going to the Extremes , 2006 .

[5]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .

[6]  Y. Tung,et al.  Constrained scaling approach for design rainfall estimation , 2009 .

[7]  C. Hall,et al.  Uncertainties in predicting travel flows: common ground and research needs. A reply to Bigano et al. , 2006 .

[8]  M. Parlange,et al.  Statistics of extremes in hydrology , 2002 .

[9]  H. Madsen,et al.  Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events: 1. At‐site modeling , 1997 .

[10]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[11]  Travis E. Oliphant,et al.  Python for Scientific Computing , 2007, Computing in Science & Engineering.

[12]  J. R. Wallis,et al.  Probability weighted moments compared with some traditional techniques in estimating Gumbel Parameters and quantiles , 1979 .

[13]  E. J. Gumbel,et al.  Statistics of Extremes. , 1960 .

[14]  Kee-Won Seong,et al.  Derivation and assessment of a bivariate IDF relationship using paired rainfall intensity–duration data , 2009 .

[15]  A. Mailhot,et al.  Design criteria of urban drainage infrastructures under climate change. , 2010 .

[16]  E. Jaynes Probability theory : the logic of science , 2003 .

[17]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[18]  Demetris Koutsoyiannis,et al.  Statistics of extremes and estimation of extreme rainfall: I. Theoretical investigation / Statistiques de valeurs extrêmes et estimation de précipitations extrêmes: I. Recherche théorique , 2004 .

[19]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[20]  F. Zwiers,et al.  Changes in the Extremes of the Climate Simulated by CCC GCM2 under CO2 Doubling , 1998 .

[21]  On Selection of Probability Distributions for Representing Annual Extreme Rainfall Series , 2002 .

[22]  Incertitude d'estimation des pluies extrêmes du pourtour méditerranéen: illustration par les données de Marseille , 2006 .

[23]  M. Lang,et al.  Bayesian comparison of different rainfall depth–duration–frequency relationships , 2008 .

[24]  Scott A. Sisson,et al.  A fully probabilistic approach to extreme rainfall modeling , 2003 .

[25]  Jery R. Stedinger,et al.  Historical information in a generalized Maximum Likelihood Framework with partial duration and annual maximum series , 2001 .

[26]  S. Emori,et al.  Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate , 2005 .

[27]  D. Caya,et al.  Assessment of future change in intensity–duration–frequency (IDF) curves for Southern Quebec using the Canadian Regional Climate Model (CRCM) , 2007 .

[28]  J. R. Wallis,et al.  Estimation of the generalized extreme-value distribution by the method of probability-weighted moments , 1985 .

[29]  Luis R. Pericchi,et al.  Anticipating catastrophes through extreme value modelling , 2003 .

[30]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[31]  Demetris Koutsoyiannis,et al.  Analysis of a Long Record of Annual Maximum Rainfall in Athens, Greece, and Design Rainfall Inferences , 2000 .