Bayesian estimation of intensity–duration–frequency curves and of the return period associated to a given rainfall event
暂无分享,去创建一个
[1] Demetris Koutsoyiannis,et al. Statistics of extremes and estimation of extreme rainfall: II. Empirical investigation of long rainfall records / Statistiques de valeurs extrêmes et estimation de précipitations extrêmes: II. Recherche empirique sur de longues séries de précipitations , 2004 .
[2] Jeong-Soo Park,et al. A simulation-based hyperparameter selection for quantile estimation of the generalized extreme value distribution , 2005, Math. Comput. Simul..
[3] Robert Piessens,et al. Quadpack: A Subroutine Package for Automatic Integration , 2011 .
[4] G. Meehl,et al. Going to the Extremes , 2006 .
[5] D. F. Hays,et al. Table of Integrals, Series, and Products , 1966 .
[6] Y. Tung,et al. Constrained scaling approach for design rainfall estimation , 2009 .
[7] C. Hall,et al. Uncertainties in predicting travel flows: common ground and research needs. A reply to Bigano et al. , 2006 .
[8] M. Parlange,et al. Statistics of extremes in hydrology , 2002 .
[9] H. Madsen,et al. Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events: 1. At‐site modeling , 1997 .
[10] I. S. Gradshteyn,et al. Table of Integrals, Series, and Products , 1976 .
[11] Travis E. Oliphant,et al. Python for Scientific Computing , 2007, Computing in Science & Engineering.
[12] J. R. Wallis,et al. Probability weighted moments compared with some traditional techniques in estimating Gumbel Parameters and quantiles , 1979 .
[13] E. J. Gumbel,et al. Statistics of Extremes. , 1960 .
[14] Kee-Won Seong,et al. Derivation and assessment of a bivariate IDF relationship using paired rainfall intensity–duration data , 2009 .
[15] A. Mailhot,et al. Design criteria of urban drainage infrastructures under climate change. , 2010 .
[16] E. Jaynes. Probability theory : the logic of science , 2003 .
[17] John D. Hunter,et al. Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.
[18] Demetris Koutsoyiannis,et al. Statistics of extremes and estimation of extreme rainfall: I. Theoretical investigation / Statistiques de valeurs extrêmes et estimation de précipitations extrêmes: I. Recherche théorique , 2004 .
[19] Brian E. Granger,et al. IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.
[20] F. Zwiers,et al. Changes in the Extremes of the Climate Simulated by CCC GCM2 under CO2 Doubling , 1998 .
[21] On Selection of Probability Distributions for Representing Annual Extreme Rainfall Series , 2002 .
[22] Incertitude d'estimation des pluies extrêmes du pourtour méditerranéen: illustration par les données de Marseille , 2006 .
[23] M. Lang,et al. Bayesian comparison of different rainfall depth–duration–frequency relationships , 2008 .
[24] Scott A. Sisson,et al. A fully probabilistic approach to extreme rainfall modeling , 2003 .
[25] Jery R. Stedinger,et al. Historical information in a generalized Maximum Likelihood Framework with partial duration and annual maximum series , 2001 .
[26] S. Emori,et al. Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate , 2005 .
[27] D. Caya,et al. Assessment of future change in intensity–duration–frequency (IDF) curves for Southern Quebec using the Canadian Regional Climate Model (CRCM) , 2007 .
[28] J. R. Wallis,et al. Estimation of the generalized extreme-value distribution by the method of probability-weighted moments , 1985 .
[29] Luis R. Pericchi,et al. Anticipating catastrophes through extreme value modelling , 2003 .
[30] Eric Jones,et al. SciPy: Open Source Scientific Tools for Python , 2001 .
[31] Demetris Koutsoyiannis,et al. Analysis of a Long Record of Annual Maximum Rainfall in Athens, Greece, and Design Rainfall Inferences , 2000 .