Efficient hybrid carboxylated polythiophene/nanocrystalline TiO2 heterojunction solar cells

[1]  Peng,et al.  Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. , 1996, Physical review. B, Condensed matter.

[2]  Yoshihito Osada,et al.  Titration Behavior and Spectral Transitions of Water-Soluble Polythiophene Carboxylic Acids , 1999 .

[3]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[4]  Lenneke H. Slooff,et al.  Photoinduced Electron Transfer and Photovoltaic Response of a MDMO‐PPV:TiO2 Bulk‐Heterojunction , 2003 .

[5]  Guo‐zhen Yang,et al.  Surface-Binding Forms of Carboxylic Groups on Nanoparticulate TiO2 Surface Studied by the Interface-Sensitive Transient Triplet-State Molecular Probe , 2003 .

[6]  Yunzhi Liu,et al.  Infiltrating Semiconducting Polymers into Self‐Assembled Mesoporous Titania Films for Photovoltaic Applications , 2003 .

[7]  Donal D. C. Bradley,et al.  Hybrid nanocrystalline TiO2 solar cells with a fluorene–thiophene copolymer as a sensitizer and hole conductor , 2004 .

[8]  J. Fréchet,et al.  Polythiophene containing thermally removable solubilizing groups enhances the interface and the performance of polymer-titania hybrid solar cells. , 2004, Journal of the American Chemical Society.

[9]  Q. Qiao,et al.  Water-soluble polythiophene∕nanocrystalline TiO2 solar cells , 2005 .

[10]  S. Bereznev,et al.  Glass/ITO/In(O,S)/CuIn(S,Se)2 solar cell with conductive polymer window layer , 2005 .

[11]  Donal D. C. Bradley,et al.  The Effect of Polymer Optoelectronic Properties on the Performance of Multilayer Hybrid Polymer/TiO2 Solar Cells , 2005 .

[12]  Donal D. C. Bradley,et al.  Efficient charge collection in hybrid polymer/TiO2 solar cells using poly(ethylenedioxythiophene)/polystyrene sulphonate as hole collector , 2005 .

[13]  W. Chiu,et al.  Novel poly(3-methylthiophene)-TiO2 hybrid materials for photovoltaic cells , 2006 .

[14]  Organic layers on silicon with potential application in hybrid solar cells , 2006 .

[15]  J. Fréchet,et al.  High-efficiency, Cd-free copper–indium–gallium–diselenide/polymer hybrid solar cells , 2007 .

[16]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[17]  J. Nedeljković,et al.  Photovoltaic characterization of hybrid solar cells using surface modified TiO2 nanoparticles and poly(3-hexyl)thiophene , 2008, Nanotechnology.

[18]  F. Krebs Air stable polymer photovoltaics based on a process free from vacuum steps and fullerenes , 2008 .

[19]  G. Sharma,et al.  Optical and electrical properties of hybrid photovoltaic devices from poly (3-phenyl hydrazone thiophene) (PPHT) and TiO2 blend films , 2008 .

[20]  Donal D. C. Bradley,et al.  Hybrid Solar Cells from a Blend of Poly(3‐hexylthiophene) and Ligand‐Capped TiO2 Nanorods , 2008 .

[21]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[22]  W. Su,et al.  Using scanning probe microscopy to study the effect of molecular weight of poly(3-hexylthiophene) on the performance of poly(3-hexylthiophene):TiO2 nanorod photovoltaic devices , 2009 .

[23]  Tie-hu Li,et al.  In situ 3-hexylthiophene polymerization onto surface of TiO2 based hybrid solar cells , 2010 .

[24]  Daoben Zhu,et al.  Conjugated polymers for high-efficiency organic photovoltaics , 2010 .

[25]  M. Thelakkat,et al.  Efficient hybrid polymer/titania solar cells sensitized with carboxylated polymer dye , 2010 .

[26]  Bumjoon J. Kim,et al.  Layer-by-layer assembled multilayer TiO(x) for efficient electron acceptor in polymer hybrid solar cells. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[27]  Yakup Hames,et al.  Electrochemically grown ZnO nanorods for hybrid solar cell applications , 2010 .

[28]  The effect of anchoring group number on the performance of dye-sensitized solar cells , 2010 .

[29]  J. Hsu,et al.  Organic/Inorganic Hybrids for Solar Energy Generation , 2010 .

[30]  W. Su,et al.  Nanoscale Morphology Control of Polymer/TiO2 Nanocrystal Hybrids: Photophysics, Charge Generation, Charge Transport, and Photovoltaic Properties , 2010 .

[31]  Seth R. Marder,et al.  n‐Type Organic Semiconductors in Organic Electronics , 2010, Advanced materials.

[32]  Hongzheng Chen,et al.  Preparation and photo-induced charge transfer of the composites based on 3D structural CdS nanocrystals and MEH-PPV , 2010 .

[33]  D. Manoharan,et al.  Hybrid solar cell based on blending of organic and inorganic materials—An overview , 2011 .

[34]  V. Bulović,et al.  Heterojunction photovoltaics using GaAs nanowires and conjugated polymers. , 2011, Nano letters.