The Inverse Eigenvalue Problem of Generalized Reflexive Matrices

A real symmetric unipotent matrix P is said to be generalized reflection matrix. A real matrix A is said to be a generalized reflexive matrix with respect to generalized reflection matrix dual (P,Q) if A = PAQ. This paper involves related inverse eigenvalue problems of generalized reflexive matrices and their optimal approximation. Necessary and sufficient conditions for the solvability of the problem are derived,the general expression of the solution is given. The optimal approximate solution is also provided.

[1]  G. Golub,et al.  A survey of matrix inverse eigenvalue problems , 1986 .

[2]  Lei Zhang,et al.  The solvability conditions for inverse eigenproblem of symmetric and anti-persymmetric matrices and its approximation , 2003, Numer. Linear Algebra Appl..

[3]  Fu-Zhao Zhou,et al.  The solvability conditions for the inverse eigenvalue problems of reflexive matrices , 2006 .

[4]  Haixia,et al.  AN INVERSE EIGENVALUE PROBLEM FOR JACOBI MATRICES , 2007 .

[5]  Xi-Yan Hu,et al.  The (P, Q) generalized reflexive and anti-reflexive solutions of the matrix equation AX=B , 2009, Appl. Math. Comput..

[6]  K. T. Joseph Inverse eigenvalue problem in structural design , 1992 .

[7]  Ji-guang Sun Backward perturbation analysis of certain characteristic subspaces , 1993 .

[8]  Ji-guang Sun Perturbation Theory for Algebraic Riccati Equations , 1998, SIAM J. Matrix Anal. Appl..

[9]  Ole H. Hald,et al.  Inverse eigenvalue problems for Jacobi matrices , 1976 .

[10]  G. M. L. Gladwell,et al.  Inverse Problems in Vibration , 1986 .

[11]  Xiyan Hu,et al.  The solvability conditions for the inverse eigenvalue problems of centro-symmetric matrices☆ , 2003 .

[12]  Michael K. Ng,et al.  On sufficient and necessary conditions for the Jacobi matrix inverse eigenvalue problem , 2004, Numerische Mathematik.

[13]  A. Sameh,et al.  A matrix decomposition method for orthotropic elasticity problems , 1989 .

[14]  Hsin-Chu Chen Generalized Reflexive Matrices: Special Properties and Applications , 1998, SIAM J. Matrix Anal. Appl..

[15]  N. Higham COMPUTING A NEAREST SYMMETRIC POSITIVE SEMIDEFINITE MATRIX , 1988 .