Clonal Selection with Immune Dominance and Anergy Based Multiobjective Optimization

Based on the concept of Immunodominance and Antibody Clonal Selection Theory, we propose a new artificial immune system algorithm, Immune Dominance Clonal Multiobjective Algorithm (IDCMA). The influences of main parameters are analyzed empirically. The simulation comparisons among IDCMA, the Random-Weight Genetic Algorithm and the Strength Pareto Evolutionary Algorithm show that when low-dimensional multiobjective problems are concerned, IDCMA has the best performance in metrics such as Spacing and Coverage of Two Sets.